跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/07/29 10:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:牟善琦
研究生(外文):Shann-Chyi Mou
論文名稱:軸推式超音波致動器之設計、模擬、建模與分析
論文名稱(外文):Design, Simulation, Modeling and Analysis of a Shaft-drivinr Type Ultrasonic Actuator
指導教授:歐陽敏盛歐陽敏盛引用關係
指導教授(外文):Minsun Ouyang
學位類別:博士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:270
中文關鍵詞:軸推式超音波致動器壓電蜂鳴片系統鑑別假性亂數二進位序列機電轉換常數電路合成
外文關鍵詞:Shaft-driving type ultrasonic actuatorPiezoelectric buzzerSystem identificationPseudo rando binary sequencesElectromechanical coupling coefficientCircuit synthesis
相關次數:
  • 被引用被引用:7
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
軸推式超音波致動器(Shaft-driving type ultrasonic actuator)係使用壓電蜂鳴片(Piezoelectric buzzer)作為致動裝置的一種新型薄盤式超音波致動器,利用其金屬背板上特殊位置鎖上螺釘所形成之三相連續反射波(Reflected wave),能將輸入電能轉換為驅動轉軸進而帶動轉子之動能。而其具有定子與轉子可獨立設計、機構設計容易、價格低廉、結構輕薄短小化等優點,且轉速高達近4000 rpm,極具未來性與開拓性。
分別以系統共振頻率(Resonant frequency)之單頻激發、及假性亂數二進位序列(Pseudo random binary sequences, PRBS)之複頻激發方式,擷取致動器輸出、入訊號、並以系統鑑別(System identification)理論進行定子動態轉移函數(Dynamic transfer function)之鑑別;再依據致動器靜、動態特性與壓電陶瓷材料伸縮振盪、機電能量轉換之行為,而建立出致動器定子部分之三階等效電路模型。由於其係以量測系統實際訊號而推導出之結果,因而較文獻中以材料、物理與機械等理論所直接推估之模型更具有代表性。
藉由已知的等效電路模型,可推算出致動系統之品質因素(Quality factor)為17.71、機電耦合常數(Electromechanical coupling coefficient)則約0.56,後續將可作為致動器結構改善、溫升抑制、穩定性提升等之重要參考指標。而單軸壓電致動平台(Single-axis piezoelectric actuating platform)的實現,則明確驗證了本文所設計之致動器具有實際應用之能力。
A thin-disc ultrasonic actuator using a piezoelectric buzzer is proposed as the actuating component for the novel shaft-driving type ultrasonic actuator. By placed the screw constraints on the metal sheet of a buzzer, a 3-phase reflected wave was constituted and propagated based on the purpose locations of constraints. This wave configuration could convert electrical energy to actuate the kinematical power for rotating the rotor. In mechanical design, the benefits of this novel ultrasonic actuator are the separated design in both of rotors and stators, convenient arrangement in mechanism, manufacturing cost in cheap, and simple structures in thin. Since the high rotary speed is closed to 4000 rpm, the motor keeps the potential and developed commercialization in future.
The input and output signals were acquisition according to the single-frequency exciting of system resonant frequencies and the multiple-frequency exciting of pseudo random binary sequences (PRBS), respectively. The dynamic transfer function of a stator was obtained via the system identification technique, and, therefore, one model of a three order equivalent circuit was built in which the dynamic features and electromechanical characteristics were considered based on material oscillating behaviors. Because of the admittance transfer function derived from measured method, it is more representative than that of past issues through the theoretical deduction in materials, physics, and mechanics.
By calculating the parameters of an equivalent circuit model, the quality factor of the ultrasonic actuating system is about 17.71 and the electromechanical coupling coefficient approaches 0.56. Both of these factors could be as the reference to suppress temperature levitation, launch the stability, either an improvement of the mechanism. An implementation of a single-axis piezoelectric actuating platform confirms the practical value for the ultrasonic actuator.
[1-1] 黃世勳、黃元茂,直線式超音波馬達之研究,國立台灣大學機械工程學系碩士論文,2001年6月。
[1-2] K. Uchino, “Piezoelectric motor: overview,” Smart Materials and Structures, Vol. 7, No. 3, pp. 273-285, 1998.
[1-3] T. Sashida and T. Kenjo, An introduction to ultrasonic motors, Clarendon Press, 1993.
[1-4] 郭榮芳、歐陽敏盛,側推式超音波馬達設計與測試,國立清華大學工程與系統科學學系碩士論文,2000年6月。
[1-5] A. Endo, N. Sasaki and Y. Tomikawa, “Linear type ultrasonic motor using two-dimensionally positioned piezoelectric elements,” Ferroelectrics, Vol. 112, pp. 165-170, 1990.
[1-6] J. Toyoda and K. Murano, “A small-size linear motor,” Japanese Journal of Applied Physics, Part 1, Vol. 30, No. 9B, pp. 2274-2276, 1991.
[1-7] D. Newton, E. Garcia and G. C. Horner, “A linear piezoelectric motor,” Smart Materials and Structures, Vol. 7, No. 3, pp. 295-304, 1998.
[1-8] S. He, W. Chen, X. Tao, and Z. Chen, “Standing wave bi-directional linearly moving ultrasonic motor,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 45, No. 5, pp. 1133-1139, 1998.
[1-9] C. Li and C. Zhao, “A large thrust linear ultrasonic motor using longitudinal and flexural modes of rod-shaped transducer,” IEEE Ultrasonics Symposium, Vol. 1, pp. 691-694, 1998.
[1-10] M. Fleischer, D. Stein and H. Meixner, “Ultrasonic piezomotor with longitudinally oscillating amplitude-transforming resonator,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 36, No. 6, pp. 607-613, 1989.
[1-11] M. Fleischer, D. Stein and H. Meixner, “New type of piezoelectric ultrasonic motor,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 36, No. 6, pp. 614-619, 1989.
[1-12] M. Kurosawa and S. Ueha “Hybrid transducer type ultrasonic motor,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 38, No. 2, pp. 89-92, 1991.
[1-13] T. Uchiki, T. Nakazawa, K. Nakamura, M. Kurosawa and S. Ueha “Ultrasonic motor utilizing elastic fin rotor,” Japanese Journal of Applied Physics, Part 1, Vol. 30, No. 9B, pp. 2289-2291, 1991.
[1-14] S. Ueha, Y. Hashimoto and Y. Koike, “Non-contact transportation using near-field acoustic levitation,” Ultrasonics , Vol. 38 ,pp. 26-32, 2000.
[1-15] Y. Koike, S. Ueha, A. Okonogi, T. Amano and K. Nakamura, “Suspension mechanism in near field acoustic levitation phenomenon,” IEEE Ultrasonics Symposium, Vol. 1, pp. 671-674, 2000.
[1-16] G. Reinhart, J. Hoeppner and J. Zimmermann, “Non-nontact wafer handling using high-intensity ultrasonics,” IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp. 139- 140 2001.
[1-17] S. Ueha, Y. Tomikawa, M. Kurosawa and N. Nakamura, Ultrasonic motors: theory and applications, Clarendon Press, 1993.
[1-18] M. Kurosawa, K. Nakamura, T. Okamoto and S. Ueha, “An ultrasonic motor using bending vibrations of a short cylinder,” IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 36, No. 5, pp. 517-521, 1989.
[1-19] C. Kusakabe, Y. Tomikawa, T. Takano and M. Aoyagi, “Characteristics of ultrasonic motor driven by pulse train in trapezoid form,” Japanese Journal of Applied Physics, Part 1, Vol. 32, No 9B, pp. 4194-4197, 1993.
[1-20] Y. Izuno, R. Takeda and M. Nakaoka, “New fuzzy reasoning-based high- performance speed/position servo control schemes incorporating ultrasonic motor,” IEEE Transactions on Industry Applications, Vol. 28, No. 3, pp. 613-618, 1992.
[1-21] T. Senjyu, K. Uezato and H. Miyazato, “Adjustable speed control of ultrasonic motors by adaptive control,” IEEE Transactions on Power Electronics, Vol. 10, No. 5, pp. 532-538, 1995.
[1-22] F. J. Lin, “Fuzzy adaptive model-following position control for ultrasonic motor,” IEEE Transactions on Power Electronics, Vol. 12, No. 2, pp. 261-268, 1997.
[1-23] F. J. Lin and L. C. Kuo, “Driving circuit for ultrasonic motor servo drive with variable structure adaptive model-following control,” IEE Proceedings of Electric Power Applications, Vol. 144, No. 3, pp. 199-206, 1997.
[1-24] F. J. Lin, R. J. Wai and S. L. Wang “A fuzzy neural network controller for parallel-resonant ultrasonic motor drive”, IEEE Transactions on Industrial Electronics, Vol. 45, No. 6, pp. 928-937, 1998.
[1-25] C. Y. Yen, F. L. Wen and M. S. Ouyang, “Thin-disc piezoceramic ultrasonic motor. Part II: system construction and control,” Ultrasonics, Vol. 41, No. 6, pp. 451-463, 2003.
[1-26] M. Aoyagi, Y. Tomikawa and T. Takano, “Simplified equivalent circuit of an ultrasonic motor and it’s applications,” Ultrasonics, Vol. 34, No. 3, pp. 275-278,1996.
[1-27] S. Thomas and F. Norbert, “Parameter identification of ultrasonic motors,” 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 19-23,1999.
[2-1] 潘純新,電路合成,敦煌書局,1996年7月。
[2-2] G. C. Temes and J. W. LaPatra, Introduction to circuit synthesis and design, McGraw-Hill Inc., 1977.
[2-3] N. Balabanian and T. A. Bickart, Linear network theory: analysis, properties, design and synthesis, Matrix publishers Inc., 1981.
[2-4] S. J. Leon, Linear algebra with applications, 3rd Edition, Macmillan publishing Company, 1990.
[2-5] S. H. Friedberg, A. J. Insel and L. E. Spence, Linear algebra, 2nd Edition, Prentice-Hall Inc., 1989.
[2-6] B. C. Kuo and F. Golnaraghi, Automatic control systems, 8th Edition, John Wiley & Sons Inc., 2003.
[2-7] 張碩,自動控制系統,四版,鼎茂圖書出版有限公司,1997年5月。
[2-8] 歐陽敏盛,系統鑑別原理。
[2-9] 賴玲瑩、歐陽敏盛,連線參數估計法的探討,國立清華大學動力機械工程學系碩士論文,1985年5月。
[2-10] K. H. Fasol and H. P. Jorgl, “Principles of model building and identification,” Automatica, Vol. 16, pp. 505-517, 1980.
[2-11] 張家榮、陳建祥,噴墨列印頭伺服控制器之參數最佳化,國立清華大學動力機械工程學系碩士論文,2000年6月。
[2-12] 陳昭亨、歐陽敏盛,盤型超音波致動器動態電性分析,國立清華大學工程與系統科學學系碩士論文,2002年6月。
[2-13] 趙清風,使用MATLAB控制之系統識別,全華科技圖書股份有限公司,2001年2月。
[2-14] 劉豹,現代控制理論,科技圖書股份有限公司,2000年9月。
[2-15] 韓曾晉,適應控制系統,科技圖書股份有限公司,2002年3月。
[2-16] 黃金壽、陳建祥,光碟機之尋軌伺服控制參數之最佳化研究,國立清華大學動力機械工程學系碩士論文,2000年6月。
[2-17] A. Papoulis, Probability and statistics, Prentice-Hall International Inc., 1990.
[2-18] 張碩、張益,自動控制系統分類題庫,鼎茂圖書出版有限公司,1999年12月。
[2-19] R. N. Mutagi, “Pseudo noise sequences for engineers,” Electronics and Communication Engineering Journal, Vol. 8, No. 2, pp. 79-87, 1996.
[2-20] K. Godfrey, Perturbation signals for system identification, Prentice-Hall Inc., 1993.
[2-21] K. Godfrey, “Design and application of multifrequency signals,” Computing and Control Engineering Journal, Vol. 2, No. 4, pp. 187-195, 1991.
[3-1] 楊明昌、歐陽敏盛,超音波馬達之設計與分析,國立清華大學工程與系統科學學系碩士論文,1999年7月。
[3-2] 吳朗,電子陶瓷-壓電,全欣資訊圖書股份有限圖書,1994年12月。
[3-3] OBO Pro.2 Inc., OBO 2001 products list: acoustic components manufacturer and Exporter, OBO Pro.2 Inc. Acoustic Components Div., 2001.
[3-4] F. L. Wen, S. C. Mou and M. S. Ouyang, “Design and construction of shaft-driving type piezoceramic ultrasonic motor,” Ultrasonics, 2004. (Accepted)
[3-5] T. Idogaki, T. Tominaga, K. Senda, N. Ohya and T. Hattori, “Bending and expending motion actuators,” Sensors and Actuators A: Physical, Vol. 54, No. 3, pp. 760-764, 1996.
[3-6] S. C. Mou and F. L. Wen, “The analytical design of optimal driving locus for a novel ultrasonic actuator by zone-energy method,” Proceedings of the 20th national conference on mechanical engineering and the Chinese society of mechanical engineers, pp. 1883-1890, 2003.
[3-7] 葉俊余、歐陽敏盛,薄片型超音波致動器之設計與模擬,國立清華大學動力機械工程學系碩士論文,2000年6月。
[3-8] 陳英豪、歐陽敏盛,超音波滑動平台之設計與研製,國立清華大學工程與系統科學學系碩士論文,2002年6月。
[3-9] 林福來、李恭晴、徐正梅、陳冒海、陳順宇,幾何學,南一書局企業股份有限公司,2003年8月。
[3-10] 洪維恩,Mathematica 3.0版入門指引,松崗電腦圖書資料股份有限公司,2000年10月。
[3-11] 荀飛,Mathematica 4.X實例學習,博碩文化股份有限公司,2001年6月。
[3-12] R. D. Cook, D. S. Malkus and M. E. Plesha, Concepts and applications of finite element analysis, 3rd Edition, John Wiley & Sons Inc., 1989.
[3-13] 王勗成、邵敏,有限元素法基本原理與數值方法,亞東書局,1992年2月。
[3-14] 李錟鋒,電腦輔助工程應用-有限元素分析,新科技書局,2000年6月。
[3-15] 虎門科技股份有限公司,ANSYS-最佳有限元素分析系統,http:// www.cadmen.com/,2004年6月。
[3-16] 陳明男、歐陽敏盛,缺口式薄盤超音波馬達之設計與分析,國立清華大學工程與系統科學學系碩士論文初稿,2004年6月。
[4-1] 林憲陽、馬劍清,壓電陶瓷複合層板動態特性之數值分析與實驗量測,國立台灣大學機械工程學系博士論文,2002年6月。
[4-2] 三聯科技股份有限公司,產品介紹-Measurement量測,http://www. sanlien.com.tw/,2004年6月。
[4-3] 林宗昇、陳俊傑、白良順、洪志成、溫富亮,智慧型材料(壓電蜂鳴片驅動點振幅量測),聖約翰技術學院機械工程系專題製作成果報告,2004年6月。
[4-4] Pico Technology Limited, “High resolution PC oscilloscope/ spectrum analyzer: the ADC-216,” http://www.picotech.com/audio _spectrum_analyzer.html, 2004.
[4-5] S. C. Mou and M. S. Ouyang, “Establishing the dynamic transfer function of a shaft-driving type ultrasonic motor by system identification,” The 5th World Congress on Intelligent Control and Automation, Hangzhou, China, June 2004. (Accepted)
[4-6] S. C. Mou and M. S. Ouyang, “Establishing the transfer function and equivalent circuit of a shaft-driving type ultrasonic motor. Part 1: Modeling the transfer function of motor by applying system identification,” Proceedings of the 23th symposium on electrical power engineering, pp. 793-797, 2002.
[4-7] J. D. Achenbach, Wave propagation in elastic solids, 2nd Edition, North Holland publishing Company, 1984.
[4-8] B. C. Kuo and F. Golnaraghi, Automatic control systems, 8th Edition, John Wiley & Sons Inc., 2003.
[4-9] S. C. Mou, J. H. Wu, F. L. Wen and M. S. Ouyang, “Research for the characteristics of ultrasonic air levitation system,” Journal of St. John’s & St. Mary’s institute of technology, Vol. 20, pp. 28-41, 2003.
[4-10] 張國財、歐陽敏盛,壓電振動子之電性分析與參數估測,國立清華大學工程與系統科學學系博士論文,2002年12月。
[4-11] 巫震華、歐陽敏盛,超音波氣浮系統之特性研究,國立清華大學動力機械工程學系碩士論文,2001年6月。
[4-12] T. Sashida and T. Kenjo, An introduction to ultrasonic motors, Clarendon Press, 1993.
[4-13] F. L. Wen, C. Y. Yen and M. S. Ouyang, “Thin-disk piezoelectric ultrasonic motor. Part 1: Design and performance evaluation,” Ultrasonics, Vol. 41, No. 6, pp. 437-450, 2003.
[4-14] 溫富亮、歐陽敏盛,壓電致動器之機電行為模擬分析與應用,國立清華大學工程與系統科學學系博士論文,2004年4月。
[5-1] S. C. Mou and M. S. Ouyang, “Establishing the transfer function and equivalent circuit of a shaft-driving type ultrasonic motor. Part 2: Building the equivalent circuit of motor by using the transfer function,” Proceedings of the 23th symposium on electrical power engineering, pp. 779-782, 2002.
[5-2] S. C. Mou and M. S. Ouyang, “Modeling the equivalent circuits of a shaft-driving type ultrasonic motor,” Proceedings of the 19th national conference of the Chinese society of mechanical engineering, pp. 601-608, 2002.
[5-3] 呂錫恩、黃啟光,陶瓷馬達之等效電路模型,中華大學電機工程學系碩士論文,1999年6月。
[5-4] 林敬宜、黃啟光,壓電陶瓷馬達之研究,中華大學電機工程學系碩士論文,2000年6月。
[5-5] 劉允升、黃啟光,線性陶瓷馬達系統之模式化,中華大學電機工程學系碩士論文,1998年6月。
[5-6] 鄒應嶼,直流馬達的模型化與參數判別,http://www.pemclab.cn.nctu. tw/,1996年12月。
[5-7] C. T. Chen, Linear system theory and design, 3rd Edition, Oxford University Press, 1999.
[5-8] A. S. Sedra and K. C. Smith, Microelectronic circuits, 5th Edition, Oxford University Press, 2003.
[5-9] T. Sashida and T. Kenjo, An introduction to ultrasonic motors, Clarendon Press, 1993.
[5-10] K. Uchino, Piezoelectric actuators and ultrasonic motors, Kluwer Academic Publishers, 1997.
[5-11] 許溢适,超音波電動機基礎,文笙書局,1995年3月。
[5-12] 吳朗,電子陶瓷-壓電,全欣資訊圖書股份有限圖書,1994年12月。
[5-13] S. C. Mou, F. L. Wen and M. S. Ouyang, “Characteristics deliberation and verification of equivalent circuits for an ultrasonic motor,” Proceedings of the 20th national conference on mechanical engineering and the Chinese society of mechanical engineers, pp. 935-940, 2003.
[5-14] D. E. Johnson, Basic electric circuit analysis, 5th Edition, Prentice-Hall Inc., 1995.
[5-15] 郭榮芳、歐陽敏盛,側推式超音波馬達設計與測試,國立清華大學工程與系統科學學系碩士論文,2000年6月。
[5-16] G. F. Franklin, J. D. Powell and E. N. Abbas, Feedback control of dynamic systems, 4th Edition, Prentice-Hall Inc., 2002.
[5-17] 潘純新,電路合成,敦煌書局,1996年7月。
[5-18] 張碩,自動控制系統,四版,鼎茂圖書出版有限公司,1997年5月。
[5-19] S. Ueha, Y. Tomikawa, M. Kurosawa and N. Nakamura, Ultrasonic motors: theory and applications, Clarendon Press, 1993.
[6-1] 陳昭亨、歐陽敏盛,盤型超音波致動器動態電性分析,國立清華大學工程與系統科學學系碩士論文,2002年6月。
[6-2] Texas Instruments Inc., The TTL data book: advanced low-power Schottky, advanced Schottky, Texas Instruments, Vol. 3, 1984.
[6-3] R. N. Mutagi, “Pseudo noise sequences for engineers,” Electronics and Communication Engineering Journal, Vol. 8, No. 2, pp. 79-87, 1996.
[6-4] Tektronix Inc., “Digital phosphor oscilloscope: TDS3012B, TDS3014B, TDS3022B, TDS3034B, TDS3052B, TDS3054B,” http://www.tek.com/, 2004.
[6-5] 陳皆福、黃建立,應用干擾觀測器和遲滯模式於壓電致動器的追蹤控制,逢甲大學自動控制工程學系碩士論文,2003年6月。
[6-6] 林德耀、黃宜正,以壓電致動器遲滯模型為基礎之控制補償,國立彰化師範大學機電工程學系碩士論文,2003年6月。
[7-1] F. L. Wen, C. Y. Yen and M. S. Ouyang, “Thin-disk piezoelectric ultrasonic motor. Part 1: Design and performance evaluation,” Ultrasonics, Vol. 41, No. 6, pp. 437-450, 2003.
[7-2] 郭榮芳、歐陽敏盛,側推式超音波馬達設計與測試,國立清華大學工程與系統科學學系碩士論文,2000年6月。
[7-3] 李政漢、歐陽敏盛,側推式超音波馬達性能量測與與應用設計,國立清華大學工程與系統科學學系碩士論文,2001年6月。
[7-4] 林志和、歐陽敏盛,超音波平台之控制系統設計與測試,國立清華大學工程與系統科學學系碩士論文,2002年6月。
[7-5] 葉俊余、歐陽敏盛,薄片型超音波致動器之設計與模擬,國立清華大學動力機械工程學系碩士論文,2000年6月。
[7-6] S. C. Mou, F. L. Wen, C. H. Lin and M. S. Ouyang, “Positioning of a ultrasonic piezoelectric actuating stage using neuro-fuzzy control,” Proceedings of 2003 national symposium on automatic control, pp. 348-353, 2003.
[7-7] 陳英豪、歐陽敏盛,超音波滑動平台之設計與研製,國立清華大學工程與系統科學學系碩士論文,2002年6月。
[7-8] S. C. Mou, Y. H. Chen, F. L. Wen and M. S. Ouyang, “Design and analysis of a single-axis ultrasonic sliding platform,” Journal of St. John’s & St. Mary’s institute of technology, pp. 63-81, Vol. 20, 2003.
[7-9] S. C. Mou, F. L. Wen, Y. H. Chen and M. S. Ouyang, “Simulation and design of a novel piezoelectric actuating stage using ANSYS,” Proceedings of 2003 Taiwan ANSYS user conference, pp. 1-7, 2003.
[7-10] S. Ueha, Y. Hashimoto and Y. Koike, “Non-contact transportation using near-field acoustic levitation,” Ultrasonics , Vol. 38 ,pp. 26-32, 2000.
[7-11] Y. Koike, S. Ueha, A. Okonogi, T. Amano and K. Nakamura, “Suspension mechanism in near field acoustic levitation phenomenon,” IEEE Ultrasonics Symposium, Vol. 1, pp. 671-674, 2000.
[7-12] G. Reinhart, J. Hoeppner and J. Zimmermann, “Non-nontact wafer handling using high-intensity ultrasonics,” IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp. 139- 140 2001.
[8-1] OBO Pro.2 Inc., OBO 2001 products list: acoustic components manufacturer and Exporter, OBO Pro.2 Inc. Acoustic Components Div., 2001.
[8-2] F. L. Wen, Z. J. Wen, M. K. Chen and S. C. Mou, “A study of electromagnetic leakage for piezoelectric actuating component,” Proceedings of 2003 Taiwan EMC conference, pp. 494-498, 2003.
[8-3] B. K. Cheng, Fundamentals of engineering electromagnetics, Addison-Wesley Pub. Co., 1993.
[8-4] 歐陽敏盛、賴明宏、黃晉興、牟善琦、黃昱先、謝禮忠,新型超音波致動光碟機尋軌機構的設計與控制(I),2004中華民國自動控制研討會論文集,2004年3月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top