跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/02 19:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江欣怡
論文名稱:電熱式微致動器之結構設計與熱傳分析
論文名稱(外文):Structural Design and Thermal Analysis of Electro-Thermal Microactuator
指導教授:江國寧
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:89
中文關鍵詞:致動器熱致動器
外文關鍵詞:actuator
相關次數:
  • 被引用被引用:5
  • 點閱點閱:115
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
致動器(Actuator)為微機電系統元件之一,其驅動方式包含靜電驅動、壓電驅動、電磁驅動、電熱驅動及記憶合金。電熱式致動器因具有低操作電壓、製程容易、與積體電路相容等特性,且可應用陣列方式增加其位移與輸出力量。因此,在應用上具有相當大的發展空間。

本研究提出以彎曲樑結構製作熱致動器,此彎曲樑結構可避免V型致動器水平方向挫曲之缺點。利用有限單元分析軟體ANSYS計算出具有最大位移及微小應力之結構。此最佳尺寸為寬度5μm、曲率半徑3,000μm之彎曲樑。其主要結構材料包含矽基材(Silicon Substrate)、鋁電極(Aluminum Pad)及作為導電熱源之多晶矽(Polysilicon)。熱致動器結構之分析流程以熱力學為基礎,計算出結構正確之熱對流係數,代入有限單元分析軟體ANSYS,求得正確之溫度分佈。再以此溫度分佈作為結構之負載,可得到結構精確之力學行為。以本研究之模擬方法所求得結構之位移與文獻中之量測結果相比較,其誤差在10%以下。
An actuator is a component of the Micro-Electro-Mechanical System (MEMS). The ways to drive actuators include electrostatic driving, piezoelectricity driving, electromagnetic driving, electro-thermal driving and shape memory alloy. Electro-thermal actuators have such advantages as lower input voltage needed, integrated-circuit manufacturing technology used. Furthermore, both types of actuators can be arrayed to increase its displacement and output force. Therefore, the actuators have sizable development space in application

We choose curve-beam as the structure, because the structure can avoid horizontal buckle in the V-type actuators. A finite element software (ANSYS) was used to solve the 3D electro-thermo-mechanical problems. We compute the optimum dimension that has the maximum displacement and minimum stress. The optimum structure of actuator is 5μm wide and 3,000μm in radius. The structure materials include Silicon Substrate, Aluminum Pad and Polysilicon. The analysis processes are based on thermodynamics, so we can compute the accurate heat transfer coefficient and get accurate temperature distribution by using ANSYS. Then we can obtain accurate mechanical behaviors, and compare them with the literature. Its error is under 10%.
[1] I. J. Busch-Vishniac, “The Case for Magnetically Driven Microactuators,“ Sensors and Actuators, Vol. 33, pp. 207-220, 1992
[2] K. Minami, S. Kawamura, and M. Esashi, “Fabrication of Distributed Electrostatic Micro Actuator (DEMA),” Journal of Microelectromechanical systems, Vol. 2, No. 3, pp. 121-127, 1993.
[3] H. Toshiyoshi, H. Fujita, T. Kawai, and T. Ueda, “Piezoelectrically Operated Actuators by Quartz Micromachining for Optical Application,” IEEE Micro Electro Mechanical System Workshop, Fort Lauderdale, FL, USA, pp. 133-138, 1993.
[4] R. Holzer, I. Shimoyama, and H. Miura, “Lorentz Force Actuation of Flexible Thin-Film Aluminum Microstructures,” IEEE, pp. 156-161, 1995.
[5] B. Rashidian, and M. G. Allen, “Electrothermal Microactuators Based on Dielectric Loss Heating,” IEEE, pp. 24-29, 1993.
[6] W. Huang, “On The Selection of Shape Memory Alloys for Actuators,” Materials and Design, Vol. 23, pp. 11-19, 2002.
[7] H. L. Tuller, “Microactuators,” Kluwer Academic Publishers, 1998.
[8] W. Riethmuller, and W. Benecke, “ Thermally Excited Silicon Microactuators,“ IEEE Trangsctions on Electron Devices, Vol. 35, No. 6, pp. 758-762, 1998.
[9] M. Ataka, A. omodaka, N. Takeshima, and H. Fujita, “Fabrication and Operation of Polyimide Bimorph Actuators for a Ciliary Motion System,” Journal of Microelectromechanical systems, Vol. 2, No. 4, pp. 146-150, 1993.
[10] H. Sehr, A. G. R. Evans, A. Brunnschweiler, G. J Ensell and T. E G Niblock, “Fabrication and Test of Thermal Vertical Bimorph Actuators for Movement in The Wafer Plane,” Journal of Micromechanics and Microengineering, Vol. 11, pp. 306-310, 2001.
[11] J. W. Judy, T. Tamagawa, and D. L. Polla, “Surface Micromachined Linear Thermal Microactuator,” IEEE, pp. 629-632, 1990.
[12] H. Guckel, J. Klein, T. Christenson, K. Skrobis, M. Laudon, and E. G. Lovell, “Thermo-Magnetic Metal Flexure Actuators,” IEEE, pp. 73-75, 1992
[13] J. H. Comtois, and Victor M. Bright, “Application for Surface-Micromachined Polysiliccon Thermal Actuators and Arrays,” Sensors and actuators A Vol. 58, pp.19-25, 1997.
[14] M. Pai, and N. C. Tien, “Low Voltage Electrothermal Vibromotor for Silicon Optical Bench Applications,” Sensors and Actuators A Vol. 83, pp.237-243, 2000.
[15] C. S. Pan, and W. Hus, “An Electro-Thermally and Laterally Driven Polysilicon Microactuator,” Journal of Micromechanics and Microengineering, Vol. 7, pp. 7-13, 1997
[16] Q.-A. Huang, and N. K. S. Lee, “Analytical Modeling and Optimization for a Laterally-Driven Polysilicon Thermal Actuator,” Microsystem Technologies, Vol. 5, pp. 133-137, 1999.
[17] Y. B. Gianchandani, and K. Najafi, “Bent-Beam Strain Sensors,” Journal of Microelectromechanical Systems, Vol. 5, No. 1, pp. 52-58, March, 1996.
[18] L. Que, J.-S. Park, and Y. B. Gianchandani, “Bent-Beam Electro-Thermal Actuators for High Force Applications,” IEEE Conf. On Micro Electro Mechanical System, Orlando, FL, pp. 31-36, 1999
[19] J. Park, L.Chu, E. Siwapornsathain, A. Oliver, and Y. Gianchandani, “Long Throw and Rotary Output Electrothermal Actuators Based on Bent-Beam Suspensions, ” IEEE Conf. On Micro Electro Mechanical System, Japan, pp.680-685, 2000.
[20] M. J. Sinclair, “A High Force Low Area MEMS Thermal Actuator,” IEEE Inter Society Conference on Thermal Phenomena, pp. 127-132, 2000.
[21] P. Lerch, C. K. Slimane, B. Romanowicz, and P. Renaud, “Modelization and Characterization of Asymmetrical Thermal Microactuators, ” Journal of Micromechanics and Microengineering, Vol. 6, pp. 134-137, 1996.
[22] L. Lin, and M. Chiao, “Electrothermal Responses of Lineshape Microstructures, ” Sensors and Actuators A Vol. 55, pp.35-41, 1996.
[23] M. Huja, and M. Husak, “Thermal Microactuators for Optical Purpose, ” IEEE International Conference on Coding and Computing, pp. 137-142, 2001, Las Vegas, NV, USA.
[24] C. T. Peng, and K. N. Chiang, “Overview of Multilayered Thin Film Theories for MEMS and Electronic Packaging Applications, ” IEEE Inter Society Conference on Thermal Phenomena, pp. 1058-1065, 2002, San Diego, USA.
[25] K. M. Chen, K. H. Horng, and K. N. Chiang, “Coplanarity Analysis and Validation of PBGA and T2-BGA Packages, ” Finite Elements in Analysis and Design, Vol. 38, pp.1165-1178, 2002.
[26] Q. A. Huang, and N. K. S. Lee, “Analysis and Design of Polysilicon Thermal Flexure Actuator,” Journal of Micromechanics and Microengineering, Vol. 9, pp.64-70, 1999.
[27] ANSYS Menu, “Thermal-Electric Element” Ch11. Table of Contents Theory Reference 5.5 1998
[28] A. F. Mills, “Heat Transfer,” Second Edition, Prentice Hall, U.S.A., 1999.
[29] A. Bejan, “Convection Heat Transfer,” Second Edition, John Wiley & Sons, Inc. 1995.
[30] M. M. Yovanovich, “On The Effect of Shape, Aspect Ratio and Orientation upon Natural Convection from Isothermal Bodies of Complex Shape,” The Winter Annual Meeting of The ASME, HTD-Vol. 82, pp. 121-129, 1987 ,Boston, Massachusetts.
[31] H. Kapels, R. Aigner, and J. Binder, “Fracture Strength and Fatigue of Polysilicon Determined by a Novel Thermal Actuator,” IEEE Transactions on Electron Devices, vol. 47, No. 7, pp.1522-1528, 2000.
[32] I. S. Sokolnikoff, “Mathematical Theory of Elasticity,” Second Edition, Mcfraw-Hill, New York, 1956.
[33] F. P. Incropera, and D. P. Dewitt, “Fundamentals of Heat and Mass Transfer,” Fourth Edition, John Wiley & Sons, Inc., New York, 1996.
[34] W. B. Bickford, “Advanced Mechanics of Materials,” Addison Wesley, 1998.
[35] G. K. Fedder, and R.T. Howe, “Thermal assembly of polysilicon microstructures, “ IEEE Micro Electro Mechanical Systems, pp. 63-68, 1991.
[36] C. H. Pan, and S. Y. Tyan, “An electro-thermally driven microactuator with bilateral motion in plane and out-of-plane,” IEEE International Symposium on Micromechatronics and Human Science, pp. 135-142, 2001.
[37] N. D. Mankame, and G. K. Ananthasuresh, “Comprehensive thermal modelling and characterization of an electro-thermal-compliant microactuator,” Journal of Micromechanics and Microengineering, Vol. 11, pp. 452-462, 2001.
[38] R. L. Boylestad, and L. Nashelsky, “Electronics: a survey of electrical engineering principles,” Fourth Edition, Prentice Hall, New Jersey, 1996.
[39] M. Shikida, K. Kawasaki, and K. Sato, “Forming a rounded etched profile by using two-step anisotropic wet etching,” IEEE International symposium on micromechatronics and human science, pp. 95-100, 2000.
[40] L. Que, J.-S. Park, and Y. B. Gianchandani, “Bent-Beam Electrothermal Actuators-Part I: Single Beam and Cascaded Devices,” Journal of Microelectromechanical Systems, Vol. 10, No. 2, pp. 247-254, June, 2001.
[41] N. D. Mankame and G. K. Ananthasuresh, “Comprehensive Thermal Modelling and Characterization of An Electro-thermal-compliant Microactuator,” Journal of Micromechanics and Microengineering, Vol. 11, pp. 452-462, 2001.
[42] ANSYS Menu, “Analysis Procedures” Ch7. Table of Contents Theory Reference 5.5 1998
[43] P. Obreja, R. Muller, and M. Ghita, “Silicon Membranes Manufactured by Electrochemical Etch Stop Technique,” International Semiconductor Conference, CAS '99 Proceedings, Vol. 2, pp. 531-534, Sinaia, Romania.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top