跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/28 08:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃慶祥
論文名稱:下泌尿道系統流場量測與模擬分析之研究
論文名稱(外文):Experimental and computational fluid dynamics study of lower urinary tract system
指導教授:林昭安
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:60
中文關鍵詞:下泌尿道系統出口阻塞非侵入式尿道壓力降計算流體力學尿流動力學
外文關鍵詞:lower urinary tract systembladder outlet obstructednoninvasiveurinarypressure dropcfdurodynamic
相關次數:
  • 被引用被引用:1
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
膀胱出口阻塞症狀(BOO)是一種常見的老年疾病,而現今在臨床上的診斷依據卻又都是用非侵入式的檢測方式,這不僅影響病人的身心健康,還會有感染傳染病的危險。此計畫希望能夠透過實驗方式來驗證數值方法,發展一套非侵入式的診斷方法來協助醫師診斷膀胱出口阻塞症狀。

研究方法方面,著重在找出尿道流場中影響壓力損失的最主要因素。本研究透過醫學影像分析,利用影像資料配合影像處理技術,搭配計算流體力學驗證出有效相當於真實人體下泌尿道外形的精簡對稱的模型,並使用CNC製造方式產生。並配合實驗驗證與2維計算流體力學模擬,呈現其流場內的壓力與速度分布情形。

此外,透過本實驗方式,也可以驗證現階段計算流體力學在模擬人體排尿狀況時的準確性。也由於模型的簡化與對稱性,可透過較精密的網格與2維計算方式得到較佳的模擬結果。目的協助醫師判斷病因,並同時可減輕病人在診斷時不論心理或生理上的不適。
In order to provide reliable measured data to validate the CFD predictions, a lower urinary tract system model is fabricated based on the reconstruction of the CT images of patients with BOO. The measured data will help to identify the underlying cause of this difference between the CFD results and the clinical data. Due to the fabricational complexity of the real 3-D urethral model, the adopted model is a straight axi-symmetrical model, but having the same cross-sectional area of the real urethral. To investigate the effects of this simplification, computational study will also be directed to investigate the influences of the 2-D (axi-symmetric) and 3-D geometry on the pressure distributions.

Since the present study is to clarify through experimental measurements the cause of the mismatch between the CFD prediction and the clinical data, with the latter being 10 times larger than the former one. Based on the present measurements, this difference might not be caused by the minor loss due to the change of geometry. Instead, other mechanism, which is not accounted for in the present CFD simulation, could be presented. The likely cause is that an opening pressure should be present to open the elastic regions of the prostate and sphincter. This region is in general closed to prevent the urine from leaking from bladder. For a BOO patient, the opening pressure required is even higher.
Title
Acknowledgement

Content………………………………………………………………i
Nomenclature……………………………………………………… iii
List of figures……………………………………………………v
Abstract…………………………………………………………… vi

Chapter 1 Introduction
1.1 Introduction……………………………………………… 1
1.2 Description of the lower urinary tract system…… 2
1.3 Methods of clinical examination and diagnosis … 5
1.4 Disadvantages of current diagnostic method ……… 6
1.5 Paper survey ……………………………………………… 6
1.6 Objective ………………………………………………… 11
Figures 13

Chapter 2 Mathematical Formulations
2.1 Governing equation ……………………………………… 19
2.2 Turbulence model ………………………………………… 20
2.3 Curvilinear coordinate system …………………………21

Chapter 3 Numerical Solution Procedure
3.1 Discretization …………………………………………… 25
3.2 Hybrid scheme ………………………………………………27
3.3 Linear equation system ………………………………… 28
3.4 SIMPLE algorithm ………………………………………… 29
3.5 Boundary conditions ………………………………………32

Chapter 4 Experimental Method
4.1 Experimental objective ………………………………… 32
4.2 Experimental model ……………………………………… 32
4.3 Experimental apparatus ………………………………… 34
4.4 Experimental procedure ………………………………… 35
4.5 Operating ranges of experiment…………………………36
Figures 37

Chapter 5 Result and Discussion
5.1 Grid independenttest………………………………………41
5.2 Comparisons of CFD predictions & measurement………42
Figures 47

Chapter 6 Conclusion and Future work
6.1 Conclusion ………………………………………………… 52
6.2 Future work …………………………………………………53

Appendix A
Diagnostic method and Abrams-Griffiths nomogram……… 55
Reference ……………………………………………………… 57
[1] Scott J.E. S., Clayton C.B., Dee P.M. and Simpson W.,
“A study of the female urethra. Experiments with
models”,Journal of Urology, vol.96, pp.763-769, 1966.
[2] Spangerg A., Terio H., Anders E. and Ask P.,
Quantification of urethral function based on Griffiths’
model of flow through elastic tubes”, Neurourol
Urodynamics, vol.8, pp.29-52, 1989.
[3] Lim CS, Abrams P., “The Abrams-Griffiths Nomogram”.
World Journal of Urology, vol.13, pp.34-39, 1995.
[4] Blaivas J.G., “Multichannel urodynamics studies in
men with benign prostatic hyperplasia”, Indications
and interpretation. Urol Clin North Am 17, pp.543-552,
1990.
[5] Abrams P, Bruskewitz R, De la Rosette J, et al, “The
diagnosis of bladder outlet obstruction”, Urodynamics.
In Cockett ATK, Khoury S, Aso Y, et al(eds):
Proceedings, the 3rd International Consultation on BPH.
Geneva, World Health Organization, pp.299-367, 1995.
[6] McGuire E.J., “Urodynamic studies in prostatic
obstruction”, In Fitzpatrick J.M., Krane R.J. (eds):
The Prostate. New York, Churchill Livingstone, pp.103-
109, 1989.
[7] Bruskewitz R, Jensen KM-E, Ivversen P, et al, ”The
relevance of minimum urethral resistance in
prostation”, Journal of Urology vol.129, pp.769-771,
1983.
[8] Schäfer W., “Detrusor as the energy source of
micturition”, In Hinman F Jr, Boyarsky S (eds): Benign
Prostatic Hypertrophy. New York, Springer Verlag,
pp.450-469, 1983.
[9] Schäfer W., “The contribution of the bladder outletto
the relation between pressure and flow rate during
micturition”, In Hinman F Jr, Boyarsky S (eds): Benign
Prostatic Hypertrophy. New York, Springer Verlag,pp.470-
496, 1983.
[10]Spangerg A., Terio H., Anders E. and Ask P.,”
Quantification of urethral function based on
Griffiths’ model of flow through elastic tubes”,
Neurourol Urodynamics, vol.8, pp.29-52, 1989.
[11]Spangerg, A., Terio H., Engberg A., and Ask P., ”
Estimation of elastic properties in the urethral flow
controlling zone by singnal analysis of urodynamic
pressure/flow data”, Med. and Biol.Eng and Computing,
vol.27 ,pp.314-321,1989.
[12]James S. Walter, John S. Wheeler, Jr., Paul
Zaszczurynski, and Michael Plishka, ”Urodynamic
measure of urethral cross-sectional area: application
for obstructive uropathy”, Neurourology and
Urodynamics, vol.13, pp.571-586, 1994.
[13]Hideo Ozawa, Hiromi Kumon, Teruhiko Yokoyama, Toyohiko
Watanabe and Michael B. Chancellor, “Develop of
noninvasive velocity flow video urodynamics using
Doppler sonography. PARTII: Clinical application in
bladder outlet obstruction”, Journal of Urology,
vol.160, p1792-1796, 1998.
[14]Ozawa, Hideo; Chancellor, Michael B.; Ding, Yew Yoong;
Nasu, Yasutomo; Yokoyama, Teruhiko; Kumon, Hiromi,
“Noninvasive urodynamic evaluation of bladder outlet
obstruction using Doppler ultrasonography”, Urology,
Vol.56, issue 3, pp.408-412, 2000.
[15]Siroky M.B., Olsson C.A., Krane R.J., “The flow rate
nomogram: I. Development”, Journal of Urology,
vol.122, pp.665-668, 1979.
[16]Haylen B.T., Parys B.T., Anyaebunam W.I., et al,
“Urine flow rates in male and female urodynamics
patient compared with the Liverpool nomograms”, Br
Journal of Urology, vol.65, pp.483-487, 1990.
[17]Harish S. Lecamwasam, Maryrose P. Subbarao V. Yalla,
and Ernest G. Cravalho, “The flow regimes and the
pressure-flow relationship in the canine urethra”,
Neurourology and Urodynamics, vol.18, pp.521-541, 1999.
[18]Comiter, Craig V.; Sullivan, Maryrose P.; Schacterle,
Richard S.; Yalla, Subbarao V., “Prediction of
prostatic obstruction with a combination of isometric
detrusor contraction pressure and maximum urinary flow
rate.”, Urology, vol.48, issue: 5, pp.723-730, 1996.
[19]C.A. Taylor, “Computational fluid dynamics in
cardiovascular surgery planning”, the 9th national
conference on computational fluid dynamics, pp.1-4,
2002.
[20]H. Liu, H. Iwase, T. Hayasaka, Y. He, N. Matsunaga, T.
Shigetani and R. Himeno, “Image-based simulation of
cardiovascular blood flow and its clinical
application”, the 9th national conference on
computational fluid dynamics, pp.15-22, 2002.
[21]T. Yamaguchi, Tomoaki Hayasaka, Daisuke Mori, Hiroyuki
Hayashi, Kouichiro Yano, Fumio Mizuno and Makoto
Harazawa, “Towards computational biomechanics
cardiovascular medical practice”, Proceedings of the
Second International Conference on Computational Fluid
Dynamics, pp.46-61, 2002.
[22]楊承修, “根據醫學影像處理計算下泌尿道系統流場之研究”,
國立清華大學碩士論文, 2003.
[23]K. C. Tan, K. L. Lau, Y. T. Ching, C. H. Yang and C. A.
Lin, “Rectangular meshes construction and
computational fluid dynamic analysis of the human
urethra using computed tomographic images”, submitting
to the 2nd Computer Graphics Workshop, 2003.
[24]李豐銘, “下泌尿道系統非侵入式量測方法之研究”, 國立清華
大學碩士論文, 2002.
[25]Launder, B. E. and Spalding, D. B., “The Numerical
Computation of Turbulent Flow”, Computer Method in
Applied Mechanics and Engineering, Vol.3, pp.269-289,
1974.
[26]M. Peric, “A finite-volume method for the prediction
of three-dimensional fluid flow in complex ducts”,
Ph.D thesis, University of London, 1985.
[27]Indeed - Visual Concepts, “Amira”,
http://www.indeed3d.com/index.html.
[28]黃仁政, “計算流體力學運用於泌尿系統臨床檢查可行性之研
究”, 國立清華大學碩士論文, 1999.
[29]楊子慶, “泌尿系統內部壓力分佈研究”, 國立清華大學碩士論
文,2000
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top