跳到主要內容

臺灣博碩士論文加值系統

(3.236.68.118) 您好!臺灣時間:2021/08/04 21:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐昌駿
研究生(外文):Changchun Hsu
論文名稱:奈米壓痕系統於微懸臂樑彎矩測試之研究
論文名稱(外文):On the Bending Tests of Micro-Cantilever Using Nanoindentation System
指導教授:方維倫
指導教授(外文):Weileun Fang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:67
中文關鍵詞:微機電奈米壓痕系統微懸臂樑彎矩測試楊氏係數
外文關鍵詞:MEMSnanoindentationcantileverbendingYoung's modulus
相關次數:
  • 被引用被引用:5
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
本文的研究目的主要是利用奈米壓痕系統進行微懸臂樑彎矩測試,並透過測得之負載-位移關係曲線,計算出薄膜材料的楊氏係數。本文針對微懸臂樑彎矩實驗中,探討數種影響楊氏係數計算的誤差效應並修正之:(1)利用有限元素的模擬,修正微懸臂樑四分之一平面邊界造成的影響;(2)將探頭刺穿懸臂樑表面的壓痕效應排除;(3)透過實驗的方法,將儀器定位解析度所造成的誤差排除。並由上述數種效應整理出一修正的微懸臂樑彎矩測試實驗方法,如此可較準確地測得材料楊氏係數。另外和壓痕測試法的結果比較發現,彎矩測試法與壓痕測試法的量測結果約有10%左右的差異量。
This study aims to determine the thin film material properties using the bending test of micromachined cantilevers. The bending test was performed by using a nanoindentation loading system. There are two merits in this study, (1) the indentation of the film during the test was considered and corrected, and (2) the boundary effect was considered in the model by finite element method. In application, the elastic modulus of electroplating Nickel film with 11μm thick and thermal oxide film with 2.1μm were characterized.

According to the results in this study, the load-deflection tests of the micromachined cantilevers using a nano-indentation system are significantly improved. Because the approach is very simple and straightforward, it can be applied as a supplement to the other measurement techniques.
摘要 I
Abstract II
目錄 III
圖目錄 V
第一章、前言 1
1-1 研究動機 1
1-2 文獻回顧 1
1-2.1 量測薄膜楊氏係數 1
1-2.2 彎矩測試法的應用 3
1-3 研究目標 4
第二章、實驗規劃 10
2-1試片製作 10
2-2實驗架設 11
2-3 參數萃取 12
第三章、分析與修正 20
3-1、邊界效應 20
3-1.1. 厚結構 20
3-1.2. 薄結構 22
3-2壓痕效應 23
3-3 量測誤差修正 25
3-3.1曲線逼近法(curve fitting) 27
3-3.2剛性疊加法 29
3-4實驗結果補償 31
第四章、結論 47
4-1 研究成果 47
4-2 未來工作 48
第五章、參考文獻 51
附錄A、奈米壓痕試驗機系統簡介 57
A-1 壓痕測試法之量測原理 57
A-2 動態之連續剛性量測 59
[1] W.N. Sharpe, Jr., B. Yuan, and R. Vaidyanathan, “Measurements of Young’s modulus, Poisson’s�sratio, and tensile strength of polysilicon,” IEEE Micro Electro Mechanical Systems, Nagoya, Japan, January, 1997, pp 424–429.
[2] H. Ogawa, Y. Ishikawa, and T. Kitahara, “Measurements of stress-strain diagrams of thin films by a developed tensile machine,” SPIE, Microlithography and Metrology in Micromachining II, Austin, TX, October, 1996, pp 272–277.
[3] H. Ogawa, K. Suzuki, S. Kaneko, Y. Ishikawa, and T. Kitahara, “Measurements of mechanical properties of microfabricated thin films,” IEEE Micro Electro Mechanical Systems, Nagoya, Japan, January, 1997, pp 430-435.
[4] T. Tsuchiya, O. Tabata, J. Sakata, and Y. Taga, “Specimen size effect on tensile strength of surface-micromachined polycrystalline silicon thin films,” Journal of Microelectromechanical Systems, 7, pp 106-113, 1998.
[5] G.M. Pharr, W.C. Oliver, and F.R. Brotzen, “On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation,” Journal of Materials Research, 7, pp 613–617, 1992.
[6] G.M. Pharr, and W.C. Oliver, “Measurement of thin film mechanical properties using nanoindentation,” MRS Bulltin, 7, pp 28-33, 1992.
[7] W.C. Oliver, and G.M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Materials Research, 7, pp 1564-1583, 1992.
[8] W.C. Oliver, and J.B. Pethica, “Methods for continuous determination of the elastic stiffness of contact between two bodies,” U.S. Patent No. 4,848,141, July 18. 1989
[9] W.C. Oliver, and G.M. Pharr, “Measurement of hardness amd elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” Journal of Materials Research, 19, pp 9-20, 2004.
[10] T. Chudoba, M. Griepentrog, A. Duck, D. Schneider, and F. Richter, “Young’s modulus measurements on ultra-thin coatings,” Journal of Materials Research, 19, pp 301-314, 2004.
[11] C.A. Taylor, M.F. Wayne, and W.K.S. Chiu, “Residual stress measurement in thin carbon films by Raman spectroscopy and nanoindentation,” Thin Solid Films, 429, pp 190-200, 2003.
[12] A.A. Volinsky, J.B. Vella, and W.W. Gerberich, “Fracture toughness, adhesion and mechanical properties of low-K dielectric thin films measured by nanoindentation,” Thin Solid Films, 429, pp 201-210, 2003.
[13] M.F. Doerner, and W.D. Nix, “A method for interpreting the data from depth-Sensing indentation instruments,” Journal of Materials Research, 1, pp 601–609, 1986.
[14] M.F. Doerner, D.S. Gardner, and W.D. Nix, “Plastic properties of thin films on substrates as measured by submicron indentation hardness and substrate curvature techniques,” Journal of Materials Research, 1, pp 845–851, 1986.
[15] M.K. Small, and W.D. Nix, “Analysis of the accuracy of the bulge test in determining the mechanical properties of thin films,” Journal of Materials Research, 7, pp 1553-1563, 1992.
[16] Y. Li, and M.J. Cima, “Bulge test on free standing gold thin films,” Materials Research Society Symposium Proc. 795, 2004.
[17] D. Maier-Schneider, J. Maibach, E. Obermeier, and D. Schneider, “Variations in Young’s modulus and intrinsic stress of LPCVD-polysilicon due to high temperature annealing,” Journal of Micromechanics and Microengineering, 5, pp 121–124, 1995.
[18] V.M. Paviot, J.J. Vlassak, and W.D. Nix, “Measuring the mechanical properties of thin metal films by means of bulge testing of micromachined windows,” Materials Research Society Symposium Proc. 356, pp 579–584. 1995.
[19]O. Tabata, K. Kawahata, S. Sugiyama and I. Igaraashi, “Mechanical property measurements of thin films,” Sensors and Actuators A, 20, pp 135-141, 1989.
[20]O. Tabata, T. Tsuchiya and N. Fujitsuka, “Poisson’s ratio evaluation of thin film for sensor application,” Technical Digest of the 12th Sensor Symposium, 1994, pp 19-22.
[21] K.E. Petersen, and C.R. Guarnieri, “Young’s modulus measurements of thin films using micromechanics,” Journal of Applied Physics, 50, pp 6761-6766, 1979.
[22] L. Kiesewetter, J.-M. Zhang, D. Houdeau, and A. Steckenborn, “Determination of Young's moduli of micromechanical thin films using the resonance method,” Sensors and Actuators A, 35, pp 153-159, 1992.
[23] W.D. Nix, “Mechanical Properties of Thin Films,” Metallurgical Transaction A, 20A, pp 2217-2245, 1989.
[24] T.P. Weihs, S. Hong, J.C. Bravman, and W.D. Nix, “Mechanical deflection of cantilever microbeams: A new technique for testing the mechanical properties of thin films,” Journal of Materials Research, 3, pp 931–942, 1988.
[25] T.P. Weihs, S. Hong, J.C. Bravman, and W.D. Nix, “Measuring the strength and stiffness of thin film materials by mechanically deflecting cantilever microbeams,” Thin Films: Stresses and Mechanical Properties, Symposium Proc. Pittsburgh, PA, 1989, pp 87-92.
[26]S. Johansson, J.-A. Schweitz, L. Tenerz and J. Tiren, “Fracture testing of silicon microelements in situ in a Scanning Electron Microscope,” Journal of Applied Physics, 66, pp 4799-4803, 1988.
[27]C. Serre, A. Perez-Rodriguez, J.R. Morante, P. Gorostiza and J. Esteve, “Determination of micromechanical properties of thin films by beam bending measurements with an Atomic Force Microscope,” Sensors and Actuators A, 74, pp. 134-138, 1999.
[28] J.D. Holbery, V.L. Eden, and M. Sarikaya, and R.M. Fisher “Experimental determination of scanning probe microscope cantilever spring constants utilizing a nanoindentation apparatus,” Review of Scientific Instrument, 71, pp 3769-3776, 2000.
[29] D. Saya, K. Fukushima, H. Toshiyoshi, G. Hashiguchi, H. Fujita, and H. Kawakatsu, “Fabrication of single-crystal Si cantilever array”, Sensor and Acyuators A, 95, pp 281-287, 2002.
[30] M. Heinzelmann, and M. Petzold, “FEM analysis of microbeam bending experiments using ultramicro indentation,” Computational Materials Science, 3, pp 169–176, 1994.
[31] D. Son, J.-H. Jeong, and D. Kwon, “Film-thickness considerations in microcantilever-beam test in measuring mechanical properties of metal thin film,” Thin Solid Films, 437 pp 182-187, 2003.
[32] S. Greek, F. Ericson, S. Johansson, M. Furtsch, and A. Rump, ”Mechanical characterization of thick polysilicon films: Young’s modulus and fracture strength evaluated with microstructures,” Journal of Micromechanics and Microengineering, 9, pp 245-251, 1999.
[33] X. Li, B. Bhushan, K. Takashima, C.-W. Baek, and Y.-K. Kim, “Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques,” Ultramicroscopy, 97, pp 481–494, 2003.
[34] T. Yi, and C.-J. Kim, “Measurement of mechanical properties for MEMS materials,” Measurement Science and Technology, 10, pp 706-716, 1999.
[35] T. Namazu, Y. Isono, and T. Tanaka, “Nano-scale bending test of Si beam for MEMS,” IEEE Micro Electro Mechanical Systems, Miyazaki, Japan, pp 205-210, 2000.
[36] H.S. Cho, K.J. Hemker, K. Lian, J. Goettert, and G. Dirras, “Measured mechanical properties of LIGA Ni structures,” Sensor and Actuators A, 103, pp 59-63, 2003.
[37] X. Li, and B. Bhushan, “Fatigue studies of nanoscale structures for MEMSyNEMS applications using nanoindentation techniques,” Surface and Coatings Technology, 163 –164, pp 521–526, 2003.
[38] C.L. Muhlstein, S.B. Brown, and R.O. Ritchie, ”High-cycle fatigue of polycrystalline silicon thin films in laboratory air,” Materials Research Society Symposium Proc. Vol. 657 2001
[39] T. Hassan, and Z. Liu, ”On the difference of fatigue strengths from rotating bending, four-point bending, and cantilever bending tests,” International Journal of Pressure Vessels and Piping, 78, pp 19-30, 2001.
[40] W. Fang, and J.A. Wickert, “Comments on measuring thin film stresses using bi-layer micromachined beams,” Journal of Micromechanics and Microengineering, 5, pp 276-281, 1995.
[41] W. Fang, and J.A. Wickert, “Determining mean and gradient residual stresses in thin films with micromachined structures,” Journal of Micromechanics and Microengineering, 6, pp 301-309, 1996.
[42] A.B. de Morais, M.F. de Moura, J.P.M. Goncalves, and P.P. Camanho, ”Analysis of crack propagation in double cantilever beam
tests of multidirectional laminates,” Mechanics of Materials, 35, pp 641–652, 2003.
[43] F. Roudolff, and Y. Ousset, “Comparison between two approaches for the simulation of delamination growth in a D.C.B. specimen,” Aerospace Science and Technology, 6, pp 123–130, 2002.
[44] E.S. Berkovich, “Three-faceted diamond pyramid for micro-hardness testing,” Industrial Diamond Review, 11, pp 129–132, 1951.
[45] B. Bhushan, Handbook of Micro/Nano Tribology. 2nd Ed., New York, NY: CRC Press, 1998.
[46] 余齊盛,”微無邊界樑振動特性的探討與應用,” 國立清華大學動力機械系碩士論文, 2004
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top