跳到主要內容

臺灣博碩士論文加值系統

(3.236.68.118) 您好!臺灣時間:2021/07/31 21:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鍾明忠
論文名稱:共振腔結構受端面位移影響之模態分析與實驗
論文名稱(外文):Modal analysis and experiment of radio frequency cavity under axial displacement
指導教授:葉孟考葉孟考引用關係
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:93
中文關鍵詞:共振腔自然頻率模態分析端面位移
相關次數:
  • 被引用被引用:5
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
同步輻射光是二十世紀以來科技研究最重要的光源之一,研究人員藉由同步輻射光可從事物理、化學、生物、材料、化工、環保、能源、電子、微機械等基礎與應用科學研究。同步輻射光的原理是將電子束注入儲存環後,由環內一系列磁鐵導引偏轉並維持在軌道上,電子束能於每一圈的運行中在偏轉磁鐵切線方向放出同步輻射光。由於電子會因輻射而損失能量,因此環內裝置高頻共振腔來補充電子的能量。而當共振腔體承受預力及外界振動源時,會造成其結構的振動特性改變進而使內部電磁場共振頻率產生偏移,為確保光源品質,了解共振腔體自然頻率與模態並精確地調整電磁場的共振頻率是十分重要的。本文將以套裝軟體ANSYSÒ分析電磁場共振頻率分別為500MHz及1.5GHz之兩種低溫超導共振腔體自然頻率與模態;並分析腔體實際操作環境受預力的自然頻率與模態。在幾何參數方面,討論不同腔體厚度及兩端開口大小對於腔體自然頻率之影響。在實驗方面,將使用銅製1.5GHz腔體模型進行實驗,並與ANSYSÒ的分析結果比較。本文研究結果可供日後共振腔體振動控制之參考。
摘要…………………………………………………………...………. Ⅰ
誌謝……………………………………………………………...……. Ⅱ
目錄……………………………………………………………...……. Ⅲ
圖表目錄………………………………………………………...……. Ⅴ
符號說明………………………………………………………...……. Ⅸ
第一章 簡介……………………………..…...………………………. 1
1.1 研究動機………………………...………………...………….. 1
1.2 文獻回顧………………………...………………………...….. 2
1.3 研究主題…………………………..……………….…...…….. 4
第二章 有限單元模擬分析……………..…………………...………. 6
2.1 模型建立與單元選取……………..………………………….. 6
2.1.1 幾何模型建立………………...…...………………...….. 6
2.1.2 單元選取…………..………………...…...………...…… 7
2.1.3 有限單元網格之建立…..…..……………………...…… 7
2.1.4 邊界條件設定……………………………………..……. 8
2.2 有限單元振動分析…………..……………………………….. 8
2.2.1 自由振動分析……………………………………..……. 12
2.2.2 強制振動分析….……………………..……………..….. 13
2.2.3 受端面位移影響之模態分析……………………...…… 14
第三章 實驗程序…………………………………………………..… 18
3.1 實驗設備……..…………………………………………...…... 18
3.1.1 上、下模具…..……………………………………...…… 18
3.1.2 拉壓試驗機及訊號收集系統.……………………..…… 18
3.1.3 衝擊鎚、加速規、放大器及動態訊號分析儀………...… 18
3.2 材料常數量測…………………………………………...……. 19
3.3 試件尺寸………………………………………………...……. 20
3.4 模態實驗……………………………………………...………. 20
3.4.1 自然模態實驗…………………………………...……… 20
3.4.2 受軸向位移影響之模態實驗…………………...……… 21
第四章 結果與討論…………………………………..……………… 22
4.1網格合理性分析……………..……………………...………… 22
4.2 500MHz腔體之模態分析…………………………..………… 23
4.2.1 不同端面位移…………………………………………... 24
4.2.2 不同楊氏係數…………………………………………... 24
4.2.3 不同密度………………………………………………... 25
4.2.4 不同開口半徑…………………………………………... 25
4.2.5不同厚度…………………………………………….…... 26
4.3 1.5GHz腔體之模態分析………..………………..……...……. 26
4.3.1 不同端面位移………..….….…………………………... 26
4.3.2 不同楊氏係數………...….……………………………... 27
4.3.3 不同密度………………………………………………... 27
4.3.4 不同開口半徑…………………………………………... 28
4.3.5不同厚度…………..………………………………...…... 29
第五章 結論…………………………………………………...…… 30
參考文獻……………………………………………………………… 31
圖表…………………………………………………………………… 34












圖表目錄
頁次
表4.1 1.5GHz半腔體承受不同端面位移之自然頻率(t=2 mm)…… 34
表4.2 1.5GHz半腔體承受不同端面位移之自然頻率(t=2.5 mm)…. 34
表4.3 1.5GHz半腔體承受不同端面位移之自然頻率(t=3 mm)…… 35
表4.4 1.5GHz全腔體承受不同端面位移之自然頻率(t=2.5 mm)…. 35
表4.5 1.5GHz全腔體承受不同端面位移之自然頻率(t=3 mm)…… 36
表4.6 1.5GHz半腔體不同厚度之自然頻率………………...……… 36
圖1.1 同步輻射設施 (a) 儲存環 (b) 共振腔外型照片.………...... 37
圖2.1 簡化後之共振腔網格…..………………………………..…… 38
圖2.2 Solid 95 單元……………………………………..………...… 38
圖2.3 腔體邊界條件……………………………………………....… 39
圖3.1 不同厚度之模具 (a) 上模具 (b) 下模具….………..……… 39
圖3.2 拉壓試驗機…………………….………………………...…… 40
圖3.3 訊號收集系統………………………………………....……… 40
圖3.4 模態分析工具………………………………………….……... 41
圖3.5 動態訊號分析儀……………………………………….……... 41
圖3.6 磷銅試片(a) 試片尺寸 (b) 黏貼端板(End Tab)之試片……. 42
圖3.7 磷銅之應力-應變關係…………………………….…………. 43
圖3.8 磷銅試片(a) 軸向應力與軸向及側向應變關係
(b) 磷銅之波松比………………………………….. 44
圖3.9 半腔體試件…………………………………………………… 45
圖3.10 全腔體試件…………………………………………………… 45
圖3.11 自然頻率量測流程….………………………………………... 46
圖3.12 1.5GHz半腔體不同量測位置壓縮1 mm之頻譜圖
(t=2 mm)………………………………………………………. 47
圖3.13 1.5GHz半腔體不同量測位置壓縮0.5 mm之頻譜圖
(t=2 mm)………………………………………………………. 48
圖3.14 1.5GHz半腔體不同量測位置兩端固定之頻譜圖
(t=2 mm)………………………………………………………. 49
圖3.15 1.5GHz半腔體不同量測位置拉伸0.5 mm之頻譜圖
(t=2 mm)………………………………………………………. 50
圖3.16 1.5GHz半腔體不同量測位置壓縮1 mm之頻譜圖
(t=2.5 mm)………….…………………………………………. 51
圖3.17 1.5GHz半腔體不同量測位置壓縮0.5 mm之頻譜圖
(t=2.5 mm)………….…………………………………………. 52
圖3.18 1.5GHz半腔體不同量測位置兩端固定之頻譜圖
(t=2.5 mm)………….…………………………………………. 53
圖3.19 1.5GHz半腔體不同量測位置拉伸0.5 mm之頻譜圖
(t=2.5 mm)………….…………………………………………. 54
圖3.20 1.5GHz半腔體不同量測位置壓縮1 mm之頻譜圖
(t=3 mm)………………………………………………………. 55
圖3.21 1.5GHz半腔體不同量測位置壓縮0.5 mm之頻譜圖
(t=3 mm)………………………………………………………. 56
圖3.22 1.5GHz半腔體不同量測位置兩端固定之頻譜圖
(t=3 mm)………………………………………………………. 57
圖3.23 1.5GHz半腔體不同量測位置拉伸0.5 mm之頻譜圖
(t=3 mm)………………………………………………………. 58
圖3.24 1.5GHz全腔體不同量測位置壓縮1 mm之頻譜圖
(t=2.5 mm)………….…………………………………………. 59
圖3.25 1.5GHz全腔體不同量測位置壓縮0.5 mm之頻譜圖
(t=2.5 mm)………….…………………………………………. 60
圖3.26 1.5GHz全腔體不同量測位置兩端固定之頻譜圖
(t=2.5 mm)………….…………………………………………. 61
圖3.27 1.5GHz全腔體不同量測位置拉伸0.5 mm之頻譜圖
(t=2.5 mm)………….…………………………………………. 62
圖3.28 1.5GHz全腔體不同量測位置壓縮1 mm之頻譜圖
(t=3 mm)………………………………………………………. 63
圖3.29 1.5GHz全腔體不同量測位置壓縮0.5 mm之頻譜圖
(t=3 mm)………………………………………………………. 64
圖3.30 1.5GHz全腔體不同量測位置兩端固定之頻譜圖
(t=3 mm)………………………………………………………. 65
圖3.31 1.5GHz全腔體不同量測位置拉伸0.5 mm之頻譜圖
(t=3 mm)………………………………………………………. 66
圖4.1 (a) 500MHz共振腔體外形(b) 尺寸圖…….….…..……….… 67
圖4.2 (a) 1.5GHz共振腔體外形(b) 尺寸圖..……...…………..…… 68
圖4.3 500MHz共振腔體頻率與單元數目關係圖.……….…..…….. 69
圖4.4 1.5GHz共振腔體頻率與單元數目關係圖.……………..…… 69
圖4.5 500MHz共振腔體前十個自然模態圖………………...……... 70
圖4.6 1.5GHz共振腔體前十個自然模態圖………………..………. 72
圖4.7 500MHz共振腔體自然頻率與端面位移關係圖.……....……. 74
圖4.8 500MHz共振腔體自然頻率與楊氏係數關係圖.……...…….. 74
圖4.9 500MHz共振腔體自然頻率與密度關係圖...………….…….. 75
圖4.10 共振腔體四分之一示意圖…………………………………… 75
圖4.11 500MHz共振腔體自然頻率與開口半徑關係圖.……....……. 75
圖4.12 500MHz共振腔體自然頻率與厚度關係圖...………….…….. 76
圖4.13 1.5GHz半腔體承受軸向位移之頻譜圖(t=2 mm)…………… 77
圖4.14 1.5GHz半腔體承受軸向位移之頻譜圖(t=2.5 mm)…………. 79
圖4.15 1.5GHz半腔體承受軸向位移之頻譜圖(t=3 mm)…………… 81
圖4.16 1.5GHz全腔體承受軸向位移之頻譜圖(t=2.5 mm)…………. 83
圖4.17 1.5GHz全腔體承受軸向位移之頻譜圖(t=3 mm)…………… 85
圖4.18 1.5GHz半腔體承受不同端面位移之分析與量測結果……... 87
圖4.19 1.5GHz全腔體承受不同端面位移之分析與量測結果……... 89
圖4.20 腔體焊接位置示意圖………………………………………… 90
圖4.21 腔體焊接位置承受壓縮示意圖……………………………… 90
圖4.22 腔體焊接位置承受拉伸示意圖……………………………… 90
圖4.23 1.5GHz共振腔體自然頻率與端面位移關係圖..…...…...…... 91
圖4.24 1.5GHz共振腔體自然頻率與楊氏係數關係圖…...……..….. 91
圖4.25 1.5GHz共振腔體自然頻率與密度關係圖………………..…. 92
圖4.26 1.5GHz共振腔體自然頻率與開口半徑關係圖……………... 92
圖4.27 1.5GHz半腔體不同厚度之分析與量測結果………………... 93
圖4.28 1.5GHz共振腔體自然頻率與厚度關係圖…………………... 93
1. http://www.srrc.gov.tw/chi/research/accelerator.html.
2. H. Vogel, M. Peiniger, M. Pekeler, P. Vom Stein, L. H. Chang, C. T. Chen, M. C. Lin, G. H. Luo, R. Sah, Ch. Wang, S. Belomestnykh, J. Knobloch, H. Padamsee, J. Sears, “Superconducting Accelerator Modules for the Taiwan Light Source,” Proceedings of EPAC, Vienna, Austria, pp. 711-713, 2000.
3. R. A. Rimmer, G. Koehler, D. Li, N. Hartman, N. Folwell, J. Hodgson, K. Ko and B. McCandless, “PEP-Ⅱ RF Cavity Revisited,” Note of CBP Tech 197 LCC-0032, December, 1999.
4. R. Valdiviez, D. Schrage, F. Martinez and W. Clark, “The Use of Dispersion Strengthened Copper in Accelerator Designs,” XX International Linac Conference, Monterey, California, 2000.
5. S. Belomestnykh, P. Barnes, E. Chojnacki, R. Ehrlich, W. Hartung, T. Hays, R. Kaplan, J. Kirchgessner, E. Nordberg, H. Padamsee, S. Peck, P. Quigley, J. Reilly, D. Rubin and J. Sears, “Development of Superconducting RF for CESR,” Proceedings of the Particle Accelerator Conference, Vancouver, Canada, 1997.
6. M. G. Rao and P. Kneisel, “Mechancal Properties of High RRR Niobium at Cryogenic Temperatures,” Advances in Cryogenic Engineering, Vol. 40, pp. 1383-1390, 1994.
7. K. Saito, T. Fujino, H. Inoue, N. Hitomi, E. Kako, T. Shishido, S. Noguchi and Y. Yamazaki, “Feasiblity Study of Nb/Cu Clad Superconducting RF Cavities,” Superconducting, Vol. 9, No. 2, June, 1999.
8. S. Ellis, “SNS SRF Time Dependent Cavity RF Resonance Shift due to Lorentz Force Induced Mechanical Exictation,” Proceedings of the Particle Accelerator Conference, Chicago, pp. 1107-1109, 2001.
9. S. Bousson, M. Fouaidy, H. Gassot, T. Junquera, J. Lesrel, J. L. Borne, J. Marini, C. Antoine, J. P. Charrier and H. Safa, “An Alternative Scheme for Stiffening SRF Cavities by Plasma Spraying,” Proceedings of the Particle Accelerator conference, New York, Vol. 2, pp. 919-921, 1999.
10. E. Chiaveri, C. Benvenuti, R. Cosso, D. Lacarrere, K. M. Schirm, M. Taufer and W. Weingarten, “Analysis and Results of the Industrial Production of the Superconducting Nb/Cu Cavities for the LEP 2 Project,” Proceedings of the Particle Accelerator Conference, Dallas, Vol. 3, pp. 1509-1511, 1995.
11. H. Padamsee, “The Science and Technology of Superconducting Cavity for Accelerator,” Superconducting Science Technology, Vol. 14, pp. 28-51, 2001.
12. J. Mammosser, P. Kneisel and J. F. Benesch, “Analysis of Mechanical Fabrication Experience with CEBAF’s Production SRF Cavities,” Report of CEBAF 93-019, 1993.
13. S. Belomestnykh, “Calculations of the Frequency Shift due to B-Cell Cavity Shape Deformations,” Report of SRF-940330-02, Cornell University, Ithaca, NY, 1994.
14. J. Kirchgessner and S. Belomestnykh, “On the Pressure Compensation for the B-cell Cavity in the MARK II Cryostat,” Report of SRF 970624-06, Laboratory of Nuclear Studies, Cornell University, pp.1-4, 1997.
15. J. Kirchgessner, “Thoughts on the Very High Value of dF/dP or Pressure Sensitivity of the B Cell Cavity in the MTM Cryostat,” Report of SRF 940321-01, Laboratory of Nuclear Studies, Cornell University, 1994.
16. M. C. Lin, Ch. Wang, L. H. Chang, G. H. Luo, P. J. Chou and M. J. Huang, “ A Coupled -Field Analysis on RF Cavity,” Proceedings of the Particle Accelerator Conference, Chicago, pp.1127-1129, 2001.
17. M. C. Lin, Ch. Wang, L. H. Chang, G. H. Luo, F. S. Kao, M. K. Yeh and M. J. Huang, “A Coupled-Field Analysis on a 500 MHz Superconducting Radio Frequency Niobium Cacity,” Proceedings of EPAC, Paris, 2002.
18. 高褔聲, “低溫超導共振腔之結構變形對內建電磁場特性之影響,” 國立清華大學碩士論文, 2002.
19. 陳伯毅, “低溫超導共振腔之挫曲及變形分析與實驗,” 國立清華大學碩士論文, 2003.
20. D. Schrage, “Structural Analysis of Superconducting Accelerator Cavities,” XX International Linac Conference, Monterey, California.
21. G. Devanz, M. Luong and A. Mosnier, “Numerical Simulations of Dynamic Lorentz Detuning of SC Cavities,” Proceedings of EPAC, Paris, pp. 2220-2222, 2002.
22. R. Mitchell, K. Matsumoto, G. Civovati, K. Davis, K. Macha and R. Sundelin, “Lorentz Force Detuning Analysis of the Spallation Neutron Source(SNS) Accelerating Cavities,” Proceedings of the 10th Workshop on RF Superconductivity, Tsukuba, Japan, pp. 6-21, 2001.
23. M. Liepe, W. D. Moeller and S. N. Simrock, “Dynamic Lorentz Force Compensation with a Fast Piezoelectric Tuner,” Proceedings of the Particle Accelerator Conference, Chicago, Vol. 2, pp. 1074-1076, 2001.
24. G. W. Ellis and B. G. Smith, “Modal Survey of Medium Energy Superconducting Radio Frequency Cavity for Accelerator Production of Tritium Project,” http:/ laacg1.lanl.gov/rfsc99/TUP/tup027.pdf /
25. J. Welch, “Ground Vibration and Siting of Cryogenics Facility for Cornell ERL Prototype,” ERL Report, 2002.
26. K. Tsumaki and N. Kumagai, “Vibration Measurement of the SPring-8 Storage Ring,” Proceedings of the Particle Accelerator Conference, Chicago, pp. 1482-1484, 2001.
27. 何西洲、林家瑞與王端正, “儲存環振動測量概況,” 同步輻射研究中心簡訊, 新竹, No. 52, pp. 18-21, 2002.
28. A. Marziali and H. A. Schwettman, “Microphonic Analysis of Cryo-module Design,” Proceedings of the Particle Accelerator Conference, Vol. 2, pp. 950 –952, 1993.
29. 蕭德慶, “雙跨距圓柱薄殼之振動分析,” 國立成功大學碩士論文, 2002.
30. M. Latour, M. Rahmoune and C. Tarico, “Vibration Control of Elastic Structures by Piezopolymer Transducers-Models and Experimental Results,” 9th International Symposium on Electrets, pp. 1055-1060, 1996.
31. J. Qiu, J. Tani and T. Takagi, “Intelligent Cylindrical Shells without Vibration,” Micro Machine and Human Science, pp. 123-129, 1994.
32. C. T. Loy and K. Y. Lan, “Vibration of Cylindrical Shell With Ring Support,” International Journal of Mechanical Sciences, Vol. 39, No. 4, pp. 455-471, 1997.
33. Y. Xiang, Y. F. Ma, S. Kitiporchai, C. W. Lim and C. W. H. Lau, “Exact Solutions for Vibration of Cylondrical Shells with Intermediate Ring Supports,” International Journal of Mechanical Siences, Vol. 40, pp. 1907-1924, 2002.
34. ANSYS Element Reference. 000855. Eighth Edition. SAS IP, Inc. 1997.
35. ANSYS Theory Reference. 000855. Eighth Edition. SAS IP, Inc. 1997.
36. R. D. Cook, D. S. Malkus and S. C. Sue, “Concepts and Applictions of Finite Element Analysis,” Wiley, New York, 1989.
37. ANSYS Dynamics V5.7 振動分析課程訓練講義. 虎門科技股份有限公司, 新竹, 2002.
38. ASTM E8M-89, “Standard Test Methods for Tension Testing of Metallic Materials,” Annual Book of ASTM Standards, Section 3, Vol. 03.01, pp. 147-161, 1989.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊