跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/02 13:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉家豪
論文名稱:多壁奈米碳管/酚醛樹脂複合材料之機械性質研究
論文名稱(外文):Mechanical properties of MWNT/Phenolic Composite
指導教授:葉孟考葉孟考引用關係戴念華戴念華引用關係
指導教授(外文):Meng-Kao YehNyan-Hwa Tai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:87
中文關鍵詞:多壁碳管酚醛樹脂複合材料
相關次數:
  • 被引用被引用:13
  • 點閱點閱:225
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:1
奈米碳管不僅擁有優秀物理性質,也具備優秀機械性質。利用奈米碳管優秀機械性質,如高比強度、高韌性,與高分子材料混合,可提昇高分子材料之各項機械性質。本文以熱固性高分子材料酚醛樹脂為基材,加入以化學氣相沉積法生成之兩種不同結構(粉碎、未粉碎)多壁奈米碳管,探討其不同碳管重量百分比對複合材料之抗拉強度、破壞應變、楊氏模數及波松比等機械性質之影響,結果顯示未粉碎碳管製成之複合材料試片,其機械性質較粉碎碳管製成之複合材料試片為佳。文中以修正型Halpin-Tsai方程式表示楊氏模數與碳管體積百分率之關係,具有不錯的嵌合效果。另外,也對多壁碳管進行化學處理使其具備胺官能基群,以為加強多壁碳管與酚醛樹脂間的介面接合,與粉碎碳管製成之複合材料試片比較後,僅楊氏模數上有提昇的效果。為了探究高分子材料特有的黏彈性質,亦以動態機械分析儀進行儲存模數、損失模數及 的測試,結果顯示多壁碳管的加入有助於增加材料內部的交連程度。最後以場發射掃描式電子顯微鏡(FESEM)觀察複合材料拉伸測試後之破裂表面的微結構,以獲得碳管與酚醛樹脂基材間之抽出、躺平、壓印與交叉等補強或破壞機制。
目 錄
頁次
摘要………………………………………………………………….. i
致謝…………………………………………………………………. ii
目錄…………………………………………………………………. iii
圖表目錄……………………………………………………………. v
第一章 緒論………………..……………………………………….. 1
1.1 研究動機………………………...………………………….. 2
1.2 參考文獻………………………...………………………….. 3
1.3 研究主題………………………...………………………….. 8
第二章 實驗步驟……………..…………………………………….. 9
2.1 實驗儀器…….……………………………………………… 9
2.2 化學氣相沉積法生成多壁碳管……………………………. 12
2.3碳管表面胺(NH2-)官能基的生成…………………………… 14
2.4 多壁碳管/酚醛樹脂複合材料……………………...………. 16
2.5 抗拉測試……………………………………………………. 18
2.6 動態機械分析………………………………………………. 19
2.7 場發射掃描式電子顯微鏡之觀察……….………………… 20
第三章 數據分析方法…………………………………………..….. 22
3.1 ASTM測試之規範..…………………………..……………... 22
3.2 數據分析……...……………………………………………..態………………………………………………. 22
3.3 最小平方法….…………………………………...…………. 23
3.4 Halpin-Tsai方程式…………………………….……………. 25
3.5 Keley-Tyson模型……………………………………………. 28
第四章 結果與討論…………………………………………… 30
4.1 化學氣相沉積法之製程參數………………………………. 30
4.2 碳管表面官能基群之選擇………………………………….…………………………………. 31
4.3 多壁奈米碳管/酚醛樹脂之製程技術……………………… 32
4.4 複合材料拉伸測試之結果…………………………………. 33
4.5 動態機械分析之結果………………………………………. 37
4.6 場發射掃描式電子顯微鏡之型態觀察……………………. 40
第五章 結論…….….……………………………………………….. 42
參考文獻……………………………..……………………………… 44
圖表………………………………..………………………………… 48
附錄………………………………………………………………….. 86




























圖表目錄
頁次
表 4-1 抗拉強度結果表……………...…………...………………. 48
表 4-2 楊氏模數結果表…………...……………….…….……….. 48
表 4-3 破壞應變結果表…………………………………………... 49
表 4-4 波松比結果表……………………………………………... 49
表 4-5 氨基碳管/酚醛樹脂的拉伸測試結果…………………….. 50
表 4-6 形狀因子與多壁碳管重量百分比之關係………………... 50
表 4-7 動態機械分析之玻璃轉換溫度 結果表………………... 51
圖2-1 CVD系統示意圖…………………………….……………. 52
圖2-2 粉碎機………….………………………………………….. 53
圖2-3 超音波振動機…………………….……………………….. 53
圖2-4 電磁攪拌機及磁石……….……………………………….. 54
圖2-5 迷你鑽石切割機…………………………...……………… 54
圖2-6 真空烘箱……………………..……………………………. 55
圖2-7 熱壓機……………………………...……………..……….. 55
圖2-8 拉壓試驗機…………………………………………...…… 56
圖2-9 場發射掃描式電子顯微鏡………………………………... 56
圖2-10 水循環真空過濾系統……………………………………... 57
圖2-11 動態機械分析儀………………………...………………… 57
圖2-12 以化學氣相沉積法製作之多壁奈米碳管(粉碎前)……… 58
圖2-13 多壁奈米碳管的直徑統計圖……………………………... 58
圖2-14 以化學氣相沉積法製作之多壁奈米碳管(粉碎後)……… 59
圖2-15 相同重量粉碎前後碳管的體積圖………………………... 59
圖2-16 上下模熱壓法示意圖……………………………………... 60
圖2-17 上下模、脫模布及鋁框擺設示意圖……………………… 61
圖2-18 拉伸測試的應力-應變曲線示意圖……………………….. 61
圖2-19 拉伸測試的側向應變-軸向應變曲線示意圖…………….. 62
圖2-20 動態機械分析操作示意圖………………………………... 62
圖2-21 動態機械量測結果示意圖………………………………... 63
圖3-1 Kelly-Tyson模型示意圖…………………………………... 63
圖3-2 有效長度示意圖…………………………………………... 64
圖4-1 具胺基之多壁碳管的FT-IR圖…………………………. 64
圖4-2 PF-650酚醛樹脂之DSC分析……………………………. 65
圖4-3 多壁碳管分布於酚醛樹脂FESEM圖..………………….. 65
圖4-4 拉伸測試試片圖………………………...………………… 66
圖4-5 抗拉強度結果……………………………….....………….. 67
圖4-6 楊氏模數結果..………………………………………….... 67
圖4-7 以SEM拍攝試片中的微小瑕疵…………………………. 68
圖4-8 氨基碳管試片的抗拉強度結果…………………………. 69
圖4-9 氨基碳管試片的楊氏模數結果………………………….. 69
圖4-10 以修正型Halpin-Tsai方程式嵌合粉碎結構楊氏模數…... 70
圖4-11 以修正型Halpin-Tsai方程式嵌合未粉碎結構楊氏模數... 70
圖4-12 破壞應變結果圖………………………………………..…. 71
圖4-13 波松比結果圖..…………………………………………..... 71
圖4-14 粉碎碳管結構的儲存模數………..………………………. 72
圖4-15 未粉碎碳管結構的儲存模數….………………………….. 72
圖4-16 粉碎碳管結構的損失模數………………………………... 73
圖4-17 未粉碎碳管結構的損失模數……………………………... 73
圖4-18 粉碎碳管結構的 ……………………………………... 74
圖4-19 未粉碎碳管結構的 …………………………………... 74
圖4-20 交連程度與儲存模數曲線型態的關係…………………... 75
圖4-21 交連程度對於儲存模數曲線型態影響示意圖…………... 75
圖4-22 結晶度的影響……………………………………………... 76
圖4-23 分子量的影響……………………………………………... 76
圖4-24 4.0wt%兩種複合材料試片的應變能比較………………... 77
圖4-25 純酚醛樹脂試片破壞面FESEM圖………………………. 77
圖4-26 1.5、2.0及4.0 wt%破壞面FESEM圖……………………... 78
圖4-27 2.0及4.0 wt%未粉碎碳管破壞面大倍數FESEM圖…….. 81
圖4-28 2.0及4.0 wt%粉碎碳管破壞面大倍數FESEM圖……….. 82
圖4-29 高倍率觀察碳管抽出現象………………………………... 83
圖4-30 典型破壞面壓印現象……………………………………... 83
圖4-31 碳管於破裂面的壓印現象………………………………... 84
圖4-32 未粉碎碳管結構中碳管的交叉現象……………………... 85
參考文獻
1. 黃德歡, “改變世界的納米技術,” 瀛舟出版社, 台灣台北, 2003.
2. 馬遠榮, “奈米科技,” 商周出版社, 台灣台北, 2002.
3. R. F. Gibson, “Principles of Composite Material Mechanics,” McGraw-Hill, New York, 1994.
4. M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, “Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load,” Science, Vol. 287, pp. 637-640, 2000.
5. B. G. Demczyk, Y. M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, and R. O. Ritchie, “Direct Mechanical Measurement of the Tensile Strength and Elastic Modulus of Multiwalled Carbon Nanotubes,” Materials Science and Engineering A, Vol. 334, pp. 173-178, 2002.
6. C. F. Cornwell and L. T. Wille, “Elastic Properties of Single-Walled Carbon Nanotubes in Compression,” Solid State Communication, Vol. 96, pp. 555-558, 1997.
7. S. Xie, W. Li, Z. Pan, B. Chang, and L. Sun, “Mechanical and Physical Properties on Carbon Nanotube,” Journal of Physics and Chemistry of Solids, Vol. 61, pp. 1153-1158, 2000.
8. E. T. Thostenson, Z. Ren, and T. W. Chou, “Advances in the Science and Technology of Carbon Nanotubes and Their Composites: a Review,” Composites Science and Technology, Vol. 61, pp. 1899-1912, 2001.
9. K. T. Lau and D. Hui, “The Revolutionary Creation of New Advanced Materials – Carbon Nanotube Composites,” Composites Part B: Engineering, Vol. 33, pp. 263-277, 2002.
10. H. Dai, “Carbon Nanotubes: Opportunities and Challenges,” Surface Science, Vol. 500, pp. 218-241, 2002.
11. S. Xie, W. Li, Z. Pan, B. Chang, and L. Sun, “Carbon Nanotubes Arrays,” Materials Science and Engineering A, Vol. 286, pp. 11-15, 2000.
12. C. Singh, M. Shaffer, I. Kinloch, and A. Windle, “Production of Aligned Carbon Nanotubes by the CVD Injection Method,” Physica B, Vol. 323, pp. 339-340, 2002.
13. W. D. Zhang, Y. Wen, W. C. Tjin, G. Q. Xu, and L. M. Gan, “Growth of Vertically Aligned Carbon-Nanotube Array on Large Area of Quartz Plates by Chemical Vapor Deposition,” Applied Physics A, Vol. 74, pp. 419-422, 2002.
14. A. Allaoui, S. Bai, H. M. Cheng, and J. B. Bai, “Mechanical and Electrical Properties of a MWNT/Epoxy Composite,” Composites Science and Technology, Vol. 62, pp. 1993-1998, 2002.
15. C. A. Cooper, D. Ravich, D. Lips, J. Mayer, and H. D. Wagner, “Distribution and Alignment of Carbon Nanotubes and Nanofibrils in a Polymer Matrix,” Composites Sciences and Technology, Vol. 62, pp. 1105-1112, 2002.
16. J. Sandler, P. Werner, M. S. P. Shaffer, V. Demchuk, and V. Altstadt, “Carbon-Nanofibre-Reinforced Poly(ether ether ketone) Composites,” Composites Part A: Applied Science and Manufacturing, Vol. 33, pp. 1033-1039, 2002.
17. M. Yin, J. A. Koutsky, T. L. Barr, N. M. Rodriguez, R. T. K. Baker, and L. Klebanov, “Characterization of Carbon Microfibers as a Reinforcement for Epoxy Resins,” Chemistry of Materials, Vol. 5, pp. 1024-1031, 1993.
18. K. T. Lau and D. Hui, “Effectiveness of Using Carbon Nanotubes as Nano-Reinforcements for Advanced Composite Structure,” Letters to the Editor / Carbon, Vol. 40, pp. 1065-1066, 2002.
19. K. T. Lau and S. Q. Shi, “Failure Mechanisms of Carbon Nanotube/Epoxy Composites Pretreated in Different Temperature Environments,” Carbon, Vol.40, pp. 2965-2968, 2002.
20. S. Kumar, H. Doshi, M. Srinivasarao, J. O. Park, and D. A. Schiraldi, “Fibers from Polypropylene/Nano Carbon Fiber Composites,” Polymer, Vol. 43, pp. 1701-1703, 2002.
21. H. D. Wagner, O. Lourie, and X. F. Zhou, “Macrofragmentation and Micro- fragmentation Phenomena in Composite Materials,” Composites Part A: Applied Science and Manufacturing, Vol. 30, pp. 59-66, 1999.
22. O. Lourie and H. D. Wagner, “Evidence of Stress Transfer and Formation of Fracture Clusters in Carbon Nanotube-Based Composites,” Composite Science and Technology, Vol. 59, pp. 975-977, 1999.
23. L. Jin, C. Bower, and O. Zhou, “Alignment of Carbon Nanotubes in a Polymer Matrix by Mechanical Stretching,” Applied Physics Letters, Vol. 73, pp. 1197-1199, 1998.
24. L. S. Schadler, S. C. Giannaris, and P. M. Ajayan, “Load Transfer in Carbon Nanotube Epoxy Composites,” Applied Physics Letters, Vol. 73, pp. 3842-3844, 1998.
25. H. D. Wagner, O. Lourie, Y. Feldman, and R. Tenne, “Stress-Induced Fragmentation of Multiwall Carbon Nanotubes in a Polymer Matrix,” Applied Physical Letters, Vol. 72(2), pp. 188-190, 1998.
26. C. Bower, R. Rosen, and L. Jin, “Deformation of Carbon Nanotubes in Nanotube-Polymer Composites,” Applied Physics Letters, Vol. 74, pp. 3317-3319, 1999.
27. D. S. Lim, J. W. An, and H. J. Lee, “Effect of Carbon Nanotube Addition on the Tribological Behavior of Carbon/Carbon Composites,” Wear, Vol. 252, pp. 512-517, 2002.
28. W. X. Chen, J. P. Tu, L. Y. Wang, H. Y. Gan, Z. D. Xu, and X. B. Zhang, “Tribological Application of Carbon Nanotubes in a Metal-Based Composite Coating and Composites,” Carbon, Vol. 41, pp. 215-222, 2003.
29. J. B. Bai, “Evidence of the Reinforcement Role of Chemical Vapour Deposition Multi-Walled Carbon Nanotubes in a Polymer Matrix,” Letters to the Editor/Carbon, Vol. 41, pp. 1325-1328, 2003.
30. D. Qian, E. C. Dickey, R. Andrews, and T. Rantell, “Load Transfer and Deformation Mechanisms in Carbon Nanotube-Polystyrene Composites,” Applied Physics Letters, Vol. 76, pp. 2868-2870, 2000.
31. J. J. Luo and I. M. Daniel, “Characterization and modeling of mechanical behavior of polymer/clay nanocomposites,” Composites Science and Technology, Vol. 63, pp. 1607-1616, 2003.
32. T. D. Fornes and D. R. Paul, “Modeling properties of nylon 6/clay nanocomposites using composite theories,” Polymer, Vol. 44, pp. 4993-5013, 2003.
33. J. Zeng, B. Saltysiak, W. S. Johnson, D. A. Schiraldi, and S. Kumar, “Processing and properties of poly(methyl methacrylate)/carbon nano fiber composites,” Composites Part B, Vol. 35, pp. 173-178, 2004.
34. I. C. Finegan, G. G. Tibbetts, and R. F. Gibson, “Modeling and characterization of damping in carbon nanofiber/polypropylene composites,” Composites Science and Technology, Vol. 63, pp. 1629-1635, 2003.
35. T. Ogasawara, Y. Ishida, T. Ishikawa, and R. Yokota, “Characterization of multi-walled carbon nanotube /phenylethynyl terminated polyimide composites,” Composite Part A, Vol. 35, pp. 67-74, 2004.
36. P. Potschke, T. D. Fornes, and D. R. Paul, “Rheological Behavior of Multiwalled Carbon Nanotube/Polycarbonate Composites,” Polymer, Vol. 43, pp. 3247-3255, 2002.
37. Z. Jin, K. P. Pramoda, G. Xie,. and S. H. Goh., “Dynamic Mechanical Behavior of Melt-processed Multi-walled Carbon Nanatubes/Poly(methyl methacrylate) Composites,” Chemical Physics Letters, Vol. 337, pp. 43-47, 2001.
38. Z. Jin, K. P. Pramoda, S. H. Goh, and G. Xu, “Poly(vinylidene fluoride)-assisted Melt-blending of Multi-walled Carbon Nanotube/Poly (methyl methacrylate) Composites,” Materials Research Bulletin, Vol. 37, pp. 271-278, 2002.
39. Z. X. Jin, S. H. Goh, G. Q. Xu, and Y. W. Park, “Dynamic Mechanical Properties of Multi-Walled Carbon Nanotube/Poly(Acrylic Acid)-Surfactant Complex,” Synthetic Metals, Vol. 135-136, pp. 735-736, 2003.
40. H. W. Goh, S. H. Goh, G. Q. Xu, K. P. Pramoda, and W. D. Zhang, “Dynamic Mechanical Behavior of in situ Functionalized Multi-Walled Carbon Nanotube/Phenoxy Resin Composite,” Chemical Physics Letters, Vol. 373, pp. 277-283, 2003.
41. F. H. Gojny, J. Nastalczyk, Z. Roslaniec, and K. Schulte, “Surface Modified Multi-Walled Carbon Nanotubes in CNT/Epoxy-Composites,” Chemical Physics Letters, Vol. 370, pp. 820-824, 2003.
42. C. A. Cooper, R. J. Young, and M. Halsall, “Investigation into the Deformation of Carbon Nanotubes and Their Composites through the Use of Raman Spectroscopy,” Composites Part A: Applied Science and Manufacturing, Vol. 32, pp. 401-411, 2001.
43. Y. J. Liu and X. L. Chen, “Evaluations of the Effective Material Properties of Carbon Nanotube-Based Composites Using a Nanoscale Representative Volume Element,” Mechanics of Materials, Vol. 35, pp. 69-81, 2003.
44. G. M. Odegard, T. S. Gates, L. M. Nicholson, and Kristopher E. Wise, “Equivalent-Continuum Modeling of Nano-Structured Materials,” Composites Science and Technology, Vol. 62, pp. 1869-1880, 2002.
45. 村上新一, 洪純仁 譯, “酚醛樹脂,” 復文出版社, 台灣台北, 1981.
46. 成會明, 張勁燕 校訂, “奈米碳管,” 五南圖書出版股份有限公司, 台灣台北, 2004.
47. T. Saito, K. Matsushige, and K. Tanaka, “Chemical Treatment and Modification of Multi-Walled Carbon Nanotubes,” Physica B, Vol. 323, pp. 280-283, 2002.
48. ASTM D796-65, “Standard Practice for Compression Molding Test Specimens of Phenolic Molding Compounds,” Annual Book of ASTM Standards, Vol. 8.2, 1981.
49. ASTM D638-82a, “Standard Test Method for Tensile Properties of Plastics,” Annual Book of ASTM Standards, Vol. 8.2, 1981.
50. 行政院國家科學委員會精密儀器發展中心出版, “儀器總覽,” 台灣台北, 1998.
51. ASTM D882-83, “Tensile Properties of Thin Plastic Sheeting,” Annual Book of ASTM Standards, Vol. 8.2, 1981.
52. 博精儀器, “熱分析儀訓練課程,” 台灣台北, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top