跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 14:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張俊吉
研究生(外文):CHUN-CHI CHANG
論文名稱:二階式直線微進給系統設計
論文名稱(外文):Design of a Two-Stage Linear Micro-Feeding System
指導教授:宋震國
指導教授(外文):Cheng-Kuo Sung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:64
中文關鍵詞:進給系統卡氏原理熱致動器爬舉式致動器雙穩態機構放大機構
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
本文提出應用於掃描試探針顯微鏡(SPM)的二階式微進給系統,其主要由粗進給系統、細進給系統與定位系統三部份組成。粗進給系統以高放大率的撓性機構,將「山形」熱致動器(Chevron beam thermal actuators)輸出的小位移放大,提高裝設在放大機構上之粗定位平台(Coarse stage)的移動速度及行程距離(60μm)。當粗進給平台位移至特定位置後,由撓性雙穩態機構與熱致動器構成的定位系統固定粗進給平台,此定位系統具有抗干擾與維持進�H系統於穩定位置並無消耗能量的特點。細進給系統以具有奈米精度的爬舉式致動器(Scratch driven actuator)為致動器並以70V的偏壓20V的正弦波驅動細進給平台(Fine stage),使其具有30nm的解析度,最大輸出力量165μN。另一方面,以實驗結果說明卡氏原理(Castigliano’s theorem)可運用於分析撓性機構的運動並與商用軟體ANSYS及pesudo-rigid-
body model模擬結果有相同的趨勢。另外,本文所提之線性微進給系統均可由面型微加工製造完成。
This paper proposes a design methodology for a two-stage linear micro-feeding system that includes a coarse-feeding subsystem, a fine-feeding subsystem and positioning subsystem. The coarse stage is driven by an array of thermal actuators through a compliant amplification mechanism. This gives it the ability to generate a rapid and long range of motion. When the coarse-feeding subsystem is moved to the desired position, the system is clamped by the positioning subsystem that features two compliant bistable mechanisms. The coarse-feeding subsystem has a range of 60 μm with a resolution of 3 μm. After the coarse stage moves into the desirable position, the scratch drive actuator shifts the fine stage to the desired position over a small range of 4 μm, with a large force of 165 μN, and a high resolution of 30 nm at a bias of 70V with an additional sine wave of amplitude 20V. Additionally, the pseudo-rigid-body model and Castigliano’s theorem were employed to derive the strain energy and the relationship between the output and input displacements of the amplification mechanism. These theorems were tested and matched the experimental results. The results of the experiments performed support the pseudo-rigid-body model and the widely accepted Castigliano’s method. The proposed micro-feeding system was fabricated by the MUMPs, which was provided by MEMSCAP.
List of Figures..........................................3
List of Tables...........................................6
Chapter 1 Introduction...................................7
1.1 Background...........................................7
1.2 Literature Review of Linear Micro-Feeding System Performance..............................................8
1.3 The objective of this research......................10
Chapter 2 Design of the Linear Micro-Feeding System.....12
2.1 Configuration of the Linear Micro-Feeding System....12
2.2 Coarse-Feeding Subsystem............................13
2.3 Positioning Subsystem...............................14
2.4 Fine-Feeding Subsystem..............................16
Chapter 3 Theory Applied to the System.................17
3.1 Castigliano’s Theorem and Pesudo-Rigid-Body Model..17
3.2 Modeling of Amplification Mechanism.................18
3.3 Modeling of the Chevron Beam Thermal Actuator.......25
3.4 Modeling of the Compliant Bistable Mechanism........32
3.5 Buckling............................................35
Chapter 4 Fabrication of System........................38
4.1 Sacrificial Layer Technology........................38
4.2 Introduction to the MUMPs�� Process..................39
4.3 Design Features.....................................40
Chapter 5 Simulation and Experiment....................46
5.1 The Amplification Mechanism.........................46
5.2 Chevron Beam Thermal Actuator.......................49
5.3 The Bistable Mechanism..............................52
5.4 The Scratch Drive Actuator..........................54
Chapter 6 Conclusion and Future Work...................59
6.1 Conclusion..........................................59
6.2 Future Work.........................................60
References.............................................62
[1] J. W. Cross, http://www.mobot.org/jwcross/spm/, 2003.
[2] N. R. Tas, A. H. Sonnenberg, A. F. M. Sander, M. C. Elwenspoek, "Surface Micromachined Linear Electrostatic Stepper Motor," Micro Electro Mechanical Systems, MEMS'97, Proceedings, IEEE, Tenth Annual International Workshop on, Jan, pp. 215–220, 1997.
[3] M. J. Daneman, N. C. Tien, O. Solgaard, A. P. Pisano, K. Y. Lau, and R. S. Muller, "Linear Microvibromotor for Positioning Optical Components," Journal of MicroElectroMechanical Systems, vol. 5, no. 3, pp.159-165,1996.
[4] M. Baltzer, T. Kraus, E. Obermeier, "A Linear Stepping Actuator in Surface Micromachining Technology for Low Voltages and Large Displacements," Solid State Sensors and Actuators, TRANSDUCERS'97, Chicago, International Conference on , vol. 2, June, pp.781–784, 1997.
[5] N. R. Tas, A. H. Sonnenberg, A. F. M. Sander, M. C. Elwenspoek, "Surface Micromachined Linear Electrostatic Stepper Motor," Micro Electro Mechanical Systems, MEMS'97, Proceedings, IEEE, Tenth Annual International Workshop on, Jan, pp. 215–220, 1997.
[6] Tas, N., J. Wissink, L. Sander, T. Lammerink, M. Elwenspoek, "Modeling, Design and Testing of the Electrostatic Shuffle Motor," Sensors and Actuators A: Physical, vol. 70, Issue: 1-2, October 1, pp.171-178, 1998.
[7] R. Yeh, S. Hollar, K. S. J. Pister, "Single Mask, Large Force, and Large Displacement Electrostatic Linear Inchworm Motors," Journal of Microelectromechanical Systems, vol. 11, issue. 4, August pp.330 -336, 2000.
[8] M. Pai, N. C. Tien, "Low Voltage Electrothermal Vibromotor for Silicon Optical Bench Applications," Sensors and Actuators A: Physical, vol. 83, issue. 1-3, May 22, pp.237-243, 2000.
[9] J. S. Park, L. L. Chu, A. D. Oliver, Y. B. Gianchandani, "Bent-Beam Electrothermal Actuators—Part II: Linear and Rotary Microengines," Journal of MicroElectroMechanical Systems, vol. 10, no. 2, June pp.255-262, 2001.
[10] H. Kwon, J. H. Lee, S. H. Jeong, S. K. Lee, W. I. Jang, and C. A. Choi, "A Micromachined Thermoelastic Actuator with 2-Dimensional Motion for Inchworm Motor Applications, " Proceedings of the 32nd ISR (International Symposium on Robotics), April, pp.796-801, 2001.
[11] S. Hollar, S. Bergbreiter, K. S. J. Pister, “Bidirectional Inchworm Motors and Two-DOF Robot Leg Operation,” TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems, 12th Innational Conference on, June, vol. 1, 8-12, pp. 262-267, 2003.
[12] J. M. Maloney, D. S. Schreiber, D. L. D. Voe, "Large-Force Electrothermal Linear Micromotors," J. Micromech. Microeng., vol. 14, no. 2, pp.226-234, 2004.
[13] L. L. Chu, J. A. Hetrick, Y. B. Gianchandani, "High Amplification Compliant Microtransmissions for Rectilinear Electrothermal Actuators," Sensors and Actuators A: Physical, vol. 97-98, April, pp.776-783, 2002.
[14] M. J. Sinclair, K. Wang, “Thermal Actuator Improvements: Tapering and Folding,” Proceedings of SPIE-The International Society for Optical Engineering, vol. 5116, pp. 137-251, May 19-21, 2003.
[15] B. D. Jensen, L. L. Howell, L. G. Salmon, “Design of Two-Link, In-Plane, Bistable Compliant Mechanism,” ASME Journal of Mechanical Design, vol. 121, no. 3, pp. 416-423, 1999.
[16] T. Akiyama, D. Collard, H. Fujita, “Scratch Drive Actuator with Mechanical Links for Self-assembly of Three-Dimensional MEMS,” J. Microelectromechanical Systems, vol. 6, Issue: 1, pp.10 – 17, 1997.
[17] I. H. Shames, J. M. Pitarresi, Introduction to Solid Mechanics, third edition, New Jersey: Prentice-Hall International, Inc, p. 673, 2000.
[18] Howell, Larry L., Spencer P. Magleby, Timothy W. McLain http://research.et.byu.edu/llhwww/pseudo/pseudo.html, 2004.
[19] L. Que, J. S. Park, Y. B. Gianchandani, “Bent-Beam Electro-Thermal Actuators for High Force Applications,” Twelfth IEEE International Conference on Micro-Electro-Mechanical Systems, MEMS '99, 17-21 Jan, pp.31-36, 1999.
[20] L-Q. Su, “Design of Micro Feeding System Integrated with Micro Positioning Device Featuring Bistable Mechanism,” MA Thesis, National Tsing Hua University, Taiwan, 2003.
[21] 楊龍杰́́,認識微機電,滄海書局,pp.348-403,2001[Yang Long Jie, Renshi Weijidian (MEMS), Changhai Shuju]。
[22] D. Koester, A. Cowen, R. Mahadevan, M. Stonefield, B. Hardy, “PolyMUMPs�� Design Handbook”, Revision 10.0, www.memsrus.com/cronos/CIMSmain2ie.html, MEMSCAP, 2003.
[23] P. Langlet, D. Collard, T. Akiyama, H. Fujita, “A Quantitative Analysis of Scratch Drive Actuation for Integrated X/Y Motion System,” 1997 International Conference on Solid-State Sensors and Actuators, Chicago, June 16-19, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top