跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/08 08:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉楊倫
研究生(外文):Yang-Lun Liu
論文名稱:奈米碳管材料性質之等效連體力學分析
論文名稱(外文):On the Equivalent Continuum Mechanics Analysis for the Material Properties of Carbon Nanotubes
指導教授:陳文華陳文華引用關係鄭仙志
指導教授(外文):Wen-Hwa ChenHsien-Chie Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:45
中文關鍵詞:奈米碳管等效連體力學材料性質
外文關鍵詞:Carbon nanotubesEquivalent continuum mechanicsMaterial properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:258
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:1
由於奈米碳管具有許多優異之材料、機械、熱傳及電學特性,近年來引起廣泛的研究。本論文旨在建立一等效連體力學分析模式以快速、準確的反算單層奈米碳管材料性質,如等效楊氏模數(Young’s modulus)及柏松比(Poisson’s ratio)等。
本論文首先以連體力學分析為基礎,分別推導等效彈簧及梁單元以模擬碳原子間之鍵結力,並以之建立有限單元分析模型,配合不同負載,以反算石墨及鋸齒型與扶手型單層奈米碳管之材料性質。所得結果與文獻中之實驗及模擬結果相較,顯示應用等效梁單元之有限單元分析模型具有較高的準確性。
最後,本論文應用等效梁單元之有限單元分析模型進一步探討凡得瓦力(van der Waals force)對於單層奈米碳管材料性質的影響。凡得瓦力係以等效非線性彈簧單元模擬。研究結果發現,凡得瓦力對於單層奈米碳管之材料性質具有相當程度的影響。
Carbon nanotubes (CNTs) have stimulated wide research activities in recent years because of the merits of their special material, mechanical, thermal and electric properties. The objective of this work is to develop an equivalent continuum mechanics analysis model to make an in-verse-calculation of the material properties of single-walled CNTs fastly and accurately, such as equivalent Young’s modulus and Poisson’s ratio.
Firstly, based on the continuum mechanics analysis, the equivalent spring and beam elements are derived to simulate the bond forces be-tween carbon atoms, respectively. By establishing the finite element mod-els using respective equivalent elements, the inverse-calculation of the material properties of graphite and single-walled CNTs with zigzag and armchair type can be made subjected to different loadings. The compari-sons between the present results and available experimental and simulat-ing data show that the finite element analysis model using equivalent beam elements has higher accuracy.
Finally, the finite element analysis model using equivalent beam elements is adopted to further study the influence of the van der Waals forces on the material properties of single-walled CNTs. The van der Waals forces are simulated by equivalent nonlinear spring elements. It is found that the van der Waals forces have significant influence on the ma-terial properties of single-walled CNTs.
目錄
摘要 I
目錄 III
圖表目錄 V
第一章、 導論 1
第二章、 奈米碳管之介紹 4
2.1 奈米碳管之製備 4
2.2 單層奈米碳管結構 4
2.3 奈米碳管之應用 5
第三章、 等效連體力學分析模式 7
3.1 分子力學 7
3.2 等效彈簧單元 9
3.3 等效梁單元 10
第四章、 凡得瓦力對奈米碳管材料性質的影響 12
4.1 凡得瓦力(van der Waals force) 12
4.2 凡得瓦力之等效模擬 12
第五章、 結果與討論 14
5.1 石墨等效楊氏模數之計算 14
5.2 奈米碳管材料性質之計算 15
5.3 等效楊氏模數之計算 16
5.4 柏松比之結果比較 18
5.5 等效彈簧及梁單元之比較 19
5.6 凡得瓦力之影響 19
第六章、 結論與未來展望 21
參考文獻 22

圖表目錄
表一、有限單元分析模型之單元數及節點數 29
表二、等效楊氏模數及柏松比與文獻比較 30
圖一、奈米碳管之電子顯微鏡圖 31
圖二、奈米碳管結構型式 32
圖三、鍵結能量形式 33
圖四、等效彈簧單元 34
圖五、等效梁單元 35
圖六、凡得瓦能及力與原子間距離之關係 36
圖七、奈米碳管之鍵結及非鍵結原子 37
圖八、凡得瓦力影響範圍 38
圖九、石墨之有限單元分析模型 39
圖十、奈米碳管之有限單元分析模型 40
圖十一、奈米碳管之等效梁分析 41
圖十二、等效楊氏模數與半徑之關係 42
圖十三、柏松比與半徑之關係 43
圖十四、等效楊氏模數與半徑之關係 (考慮凡得瓦力效應) 44
圖十五、柏松比與半徑之關係 (考慮凡得瓦力效應) 45
[1] Allinger, N. L., 1977, “MM2. A Hydrocarbon Force Field Utilizing V1 and V2 Torsional Terms,” Journal of the American Chemical So-ciety, Vol. 99, pp. 8127-8134.
[2] Allinger, N. L., Yuh, Y. H., Lii and J. H., 1989,” The MM3 force field for hydrocarbons,” Journal of the American Chemical Society, Vol. 23, pp. 8551-8582.
[3] Berber, S, Kwon, Y. K. and Tománek, D, 2000, “Unusually High Thermal Conductivity of Carbon Nanotubes,” Physical Review Let-ters, Vol. 84, pp. 4613-4616.
[4] Burkert, U. and Allinger, N. L., 1982, “Molecular Mechanics,” American Chemical Society.
[5] Chang, T. C. and Gao, H. J., 2003, “Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model,” Journal of the Mechanics and Physics of Solids, Vol. 51, pp. 1059-1074.
[6] Cornwell, C. F. and Wille, L. T., 1997, “Elastic properties of sin-gle-walled carbon nanotubes in compression,” Solid State Commu-nication, Vol. 101, pp. 555-558.
[7] Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, Jr., K. M., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W., and Kollman, P. A., 1995, “A second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules,” Journal of the American Chemical Society, Vol. 117, pp. 5179-5197.
[8] Dillon, A. C., Jones, K. M., Bekkendahl, T. A., Kiang, C. H., Bethune, D. S. and Heben, M. J., 1997 “Storage of hydrogen in single-walled carbon nanotubes,” Nature, Vol. 386, pp. 377-379.
[9] Dresselhaus, M. S., Dresselhaus, G., and Saito, R., 1995, “Physics of carbon nanotubes,” Carbon, Vol. 33, pp. 883-891.
[10] Gao, G. H., Cagin, T. and Goddard III, W. A., 1998, “Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes,” Nanotechnology, Vol. 9, pp. 184-191.
[11] Gao, H., Huang, Y. and Abraham, F. A., 2001, “Continuum and at-omistic studies of intersonic crack propagation,” Journal of the Me-chanics and Physics of Solids, Vol. 49, pp. 2113-2132.
[12] Hafner, J. H., Cheung, C. L. and Lieber, C. M., 1999, “Direct Growth of Single-Walled Carbon Nanotube Scanning Probe Microscopy Tips,” Journal of American Chemical Society, Vol. 121, pp. 9750-9751.
[13] Harris, P. J. F., 1999, “Carbon nanotubes and related structures,” Cambridge University Press.
[14] Hernandez, E., Goze, C., Bernier, P. and Rubio, A., 1998, “Elastic properties of C and B¬xCyNz¬ composite nanotubes,” Physical Review Letters, Vol. 80, pp. 4502-4505.
[15] Iijima, S., 1991, “Helical microtubules of graphitic carbon,” Nature, Vol. 354, pp. 56-58.
[16] Iijima, S. and Ichihashi, T., 1993, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, Vol. 363, pp. 603-605.
[17] Kelly, B. T., 1981, “Physic of Graphite,” Applied Science, London.
[18] Kociak, M., Kasumov, A. Y., Guéron, S., Reulet, B., Khodos, I. I., Gorbatov, Y. B., Volkov, V. T., Vaccarini, L. and Bouchiat, H., 2000 “Superconductivity in Ropes of Single-Walled Carbon Nanotubes,” Physical Review Letters, Vol. 86, pp. 2416-2419.
[19] Krishnan, A., Dujardin, E., Ebbesen, T. W., Yianilos, P. N. and Treacy, M. M. J., 1998, “Young’s modulus of single-walled nanotubes,” Physical Review B, Vol. 58, pp. 14013-14019.
[20] Kudin, K. N., Scuseria, G. E. and Yakobson, B. I., 2001, “C2F, BN and C nanoshell elasticity from ab initio computations,” Physical Re-view B, Vol. 64, pp. 235406(1-10).
[21] Lennard-Jones, J. E., 1924, “The Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature,” Proceedings of Royal Society (London), Vol. 106A, pp. 441.
[22] Li, C. Y. and Chou, T. W., 2003a, “A structural mechanics approach for the analysis of carbon nanotubes,” International Journal of Solid and Structures, Vol. 40, pp. 2487-2499.
[23] Li, C. Y. and Chou, T. W., 2003b, “Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces,” Composite Science and Technology, Vol. 63, pp. 1517-1524.

[24] Lier, G. V., Alsenoy, C. V., Doran, V. V. and Geerlings, P., 2000, “Ab intitio study of the elastic properties of single-walled carbon nano¬tubes and grapheme,” Chemical Physics Letters, Vol. 326, pp. 181-185.
[25] Liu, Y. J. and Chen, X. L., 2003 “Evaluations of the effective mate-rial properties of carbon nanotube-based composite using a nano¬scale representative volume element,” Mechanics of Materials, Vol. 35, pp. 69-81.
[26] Lu, J. P., 1997, “Elastic properties of carbon nanotubes and nano¬ropes,” Physical Review Letters, Vol. 79, pp. 1297-1300.
[27] Muster, J., Burghard, M., Roth, S., Duesberg, G. S., Hernandez, E. and Rubio, A., 1998, “Scanning force microscopy characterization of individual carbon nanotubes on electrode arrays,” Journal of Vacuum Science and Technology B, Vol. 16, pp. 2796-2801.
[28] Odegard, G. M., Gates, T. S., Nicholson, L. M. and Wise, K. E., 2002, “Equivalent-continuum modeling of nano-structured materials,” Composites Science and Technology, Vol. 62, pp. 1869-1880.
[29] Ozaki, T., Iwasa, Y. and Mitani, T., 2000, “Stiffness of single-walled carbon nanotubes under large strain,” Physical Review Letters, Vol. 84, pp. 1712-1715.
[30] Prylutskyy, Y. I., Durov, S. S., Ogloblya, O. V., Buzaneva, E. V. and Scharff, P., 2000, “Molecular dynamics simulations of mechanical, vibrational and electronic properties of carbon nanotubes,” Computa-tional Material Science, Vol. 17, pp. 352-355.
[31] Qian, D., Wagner, G. J., Liu, W. K., Yu, M. F. and Ruoff, R. S., 2002, “Mechanics of carbon nanotubes,” Applied Mechanics Review, Vol. 55, pp. 495-533.
[32] Rappe, A. K. and Casewit, C. J., 1997, “Molecular Mechanics across chemistry,” University Science Books.
[33] Rinzler, A. G., Hafner, J. H., Nikolaev, P., Lou, L., Kim, S. G., Tománek, D., Nordlander, P., Colbert, D. T. and Smalley, R. E., 1995, “Unraveling Nanotubes: Field Emission from an Atomic Wire,” Sci-ence, Vol. 269, pp. 1550-1553.
[34] Robertson, D. H., Brenner, D. W. and Mintmire, J. W., 1992, “Ener-getics of nanoscale graphitic tubules,” Physical Review B, Vol. 45, pp. 2592-2595.
[35] Salvetat, J. P., Briggs, G. A. D., Bonard, J. M., Bacsa, R. R. and Kulik, A. J., 1999, “Elastic and shear moduli of single-walled carbon nano¬tube ropes,” Physical Review Letters, Vol. 82, pp. 944-947.
[36] Sanchez-Portal, D., Artacho, E., Soler, J. M., Rubio, A. and Ordejon, P., 1999, “Ab Initio structural, elastic, and vibrational properties of carbon nanotubes,” Physical Review B, Vol. 59, pp. 12678-12688.
[37] Tombler, T. W., Zhou, C., Alexseyev, L., Kong, J., Dai, H., Liu, L., Jayanthi, C. S., Tang, M. and Wu, S. Y., 2000, “Reversible electro¬mechanical characteristics of carbon nanotubes under local-probe manipulation,” Nature, Vol. 405, pp. 769-772.


[38] Treacy, M. M. J., Ebbesen, T. W. and Gibson, J. M., 1996, “Excep-tionally high Young’s modulus observed for individual carbon nano-tubes,” Nature, Vol. 381, pp. 678-680.
[39] Vaccarini, L., Goze, C., Henrard, L., Hernandez, E., Bernier, P. and Rubio, A., 2000, “Mechanical and electronic properties of carbon and boron-nitride nanotubes,” Carbon, Vol. 38, pp. 1681-1690.
[40] Wong, E. W., Sheehan, P. E. and Lieber, C. M., 1997, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nano¬tubes,” Science, Vol. 277, pp. 1971-1975.
[41] Yakobson, B. I., Brabec, C. J. and Bernholc, J., 1996, “Nano¬mechanics of carbon tubes: instabilities beyond linear range,” Physi-cal Review Letters, Vol. 76, pp. 2511-2514.
[42] Yao, N. and Lordi, V., 1998, “Young’s modulus of single-walled car-bon nanotubes,” Journal of Applied Physics, Vol. 84, pp. 1939-1943.
[43] Yu, M., Lourie, O., Dyer, M., Moloni, K., Kelly, T. and Ruoff, R., 2000, “Strength and breaking mechanism of multiwalled carbon nano¬tubes under tensile load,” Science, Vol. 287, pp. 637-640.
[44] Zhang, P., Jiang, H., Huang, Y., Geubelle, P. H. and Hwang, K. C., 2004, “An atomistic-based continuum theory for carbon nanotubes: analysis of fracture nucleation,” Journal of the Mechanics and Phys-ics of Solids, Vol. 52, pp. 977-998.
[45] Zhou, G., Duan, W. and Gu, B., 2001, “First-principles study on morphology and mechanical properties of single-walled carbon nano¬tube,” Chemical Physics Letters, Vol. 333, pp. 344-349.
[46] The Nanotube Site, http://www.pa.msu.edu/cmp/csc/nanotube.html
[47] 馬遠榮, 施政宏, 奈米碳管介紹, http://134.208.23.152/.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 黃光琪、顧乃平、劉雪娥、何淮中、魏崢(1996)‧心臟移植後患者生活品質及其相關因素之探討‧護理研究,4(4),333-344。
2. 黃人珍、顧乃平、毛新春、盧成皆(1996)‧乳癌婦女之希望狀態及相關因素探討,護理研究4(1),35-45。
3. 洪彩慈、駱麗華(2000)‧三位乳癌婦女的受苦歷程及社會支持‧榮總護理,17(1),72-81。
4. 周繡玲、顧乃平、劉雪娥、白璐(1997)‧成人急性白血病病患生活品質及其相關因素之探討‧護理研究,5(2),182-194。
5. 林春香、劉雪娥、王正儀(1996)‧大腸直腸癌症病患生活品質及其相關因素之探討‧護理研究,4(1),13-25。
6. 林春香、劉雪娥、廖張京隸(1993)‧腎臟移植病患生活品質及其相關因素之探討‧護理研究,1(4),369-379。
7. 呂桂雲、金繼春、黃惠萍(1993)‧乳癌婦女的因應行為,護理研究,1(3),247-256。
8. 吳佳珍、林秋菊(1997)‧生活品質的概念分析,榮總護理14(1),102-106。
9. 陳美玲、顧乃平(1998)‧血液透析病患生活品質及其相關因素之探討‧護理研究,6(5),363-404。
10. 陳惠美、馬鳳歧、郭英調、石宜銘(1999)‧乳癌術後婦女身心社會調適之探討﹘以羅氏適應模式為基礎,護理研究7(4),321-332。
11. 楊克平、尹祚芊(1998)‧癌末病患健康相關生活品質內涵之確認,護理研究7(2),129-143。
12. 鍾美玲、顧乃平、吳肖琪、趙祖怡、陽琪(2001)‧乳癌婦女治療後婚姻調適及其相關因素探討,護理研究,9(2),137-145。
13. 盧成皆(1996)‧護理之研究結果中常遇到的統計問題實例探討‧護理研究,4(3),298-305。
14. 盧成皆、林京芬(1998)‧關於Cronbach’s α 的使用與闡釋‧護理研究,6(1),442-457。