跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/08/01 23:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:龔威儒
研究生(外文):Wei-Ju Kung
論文名稱:局部遮蔽圖形之自動比對
論文名稱(外文):Occluded Pattern Matching Based on Ring Coding
指導教授:彭明輝彭明輝引用關係
指導教授(外文):Prof. Ming-Hwei Perng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:68
中文關鍵詞:圖形比對串列比對
外文關鍵詞:pattern matchingstring matching
相關次數:
  • 被引用被引用:11
  • 點閱點閱:310
  • 評分評分:
  • 下載下載:69
  • 收藏至我的研究室書目清單書目收藏:0
圖形比對領域由於應用範圍很廣泛,成為近年來機械視覺領域中十分熱門的一項研究題目。目前圖形比對所遭遇到主要的問題點在於:難以同時達到效率、旋轉不變量與物件缺陷的強健性三者之間的平衡與需求。
本論文從環形編碼出發,對既有的環狀樣板比對技術加以改進,發展出一套新的串列比對方法。利用此串列比對法搭配既有之環形編碼與環狀樣板加以改進之後,成功地突破了以往在樣板圖形比對之研究中,對於比對效率、旋轉不變量與物件缺陷的強健性三者往往無法同時兼顧的問題。並且利用邊跡影像進行輸入,改善原本利用全域閥值之二值化前處理,使得灰階影像因明暗變化過劇,無法將待測物自背景分離因而無法進行比對之限制。
最後,本論文會整合出一套完整的圖形比對演算法,並且依次以不同複雜度的影像進行模擬以檢視之。以驗證所提出之演算法的確具有圖形比對-包含位置以及旋轉角、旋轉不變量特性以及忍受待測物具有受到遮蔽以及雜邊跡侵入等缺陷之強健性等能力。
第一章簡介……………………………………………………………1
1.1 研究背景…………………………………………………………1
1.2 文獻回顧…………………………………………………………2
1.2-1圖樣識別的分類與辨認目的…………………………………2
1.2-2樣板比對 (Template matching) ……………………………4
1.2-3結構圖樣識別 (Structure approach) ………………………7
1.2-4旋轉不變性-環形編碼技術 (Ring coding techniques) …9
1.3 研究動機、目的與範圍…………………………………………13
1.4 論文結構…………………………………………………………14
第二章 環狀樣板比對技術………………………………………16
2.1 環狀樣板比對方法介紹…………………………………………16
2.2 環狀樣板比對特性………………………………………………21
2.3 影像分割(image segmentation)技術…………………………24
第三章 串列比對方法設計………………………………………28
3.1 簡易串列比對…………………………………………………28
3.2 循環串列比對…………………………………………………36
第四章 比對系統與候選位置篩選……………………………………41
4.1 角度特徵取得與候選位置歸類…………………………………41
4.2 圖形比對完整流程………………………………………………45
第五章 實驗結果與效能分析………………………………………47
5.1 參數選擇………………………………………………………47
5.2 實驗模擬結果……………………………………………………50
5.2-1 簡單規則影像圖形比對-印刷電路板………………………50
5.2-2 具旋轉與雜訊邊跡之影像圖形比對…………………………52
5.2-3 複雜、不規則且具有遮蔽與缺陷之影像圖形比對…………54
5.2-4 黑白測試影像圖形比對………………………………………57
5.2-5雜訊之影像圖形比對…………………………………………59
5.3 效能與結果分析…………………………………………………60
5.3-1比對速度與計算效率……………………………………………60
5.3-2 影像特性與限制範圍…………………………………………62
第六章 結論……………………………………………………………64
6.1 本研究之貢獻……………………………………………………64
6.2 未來研究方向……………………………………………………65
參考文獻………………………………………………………………66
[1] A.k. Jain, R.P. W. Duin and J.C. Mao, “Statistical pattern recognition : A review,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no.1, pp.4-37, 2000.
[2] R. Bajcsy and S. Kovacic, “Multiresolution elastic matching,” Computer Vision Graphics Image Processing, vol.46, pp.1-21, 1989.
[3] U. Grenender, General Pattern Theory. Oxford Univ. Press, 1993.
[4] H.L. Peng and S.Y. Chen, “Trademark shape recognition using closed contours,” Pattern Recognition, vol.18, pp.791-803, 1997.
[5] L.I. Perlovsky, “Conundrum of combinational complexity,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.20, no.6, pp.666-670, 1998.
[6] R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis. Wiley, New York, 1972.
[7] K. Fukunaga, Introduction to Statistical Pattern Recognition. Academic Press, Boston, 1990.
[8] A.K. Jain, J. Mao, and K.M. Mohiuddin, “Artificial neural networks: A tutorial,” Computer, pp31-44, 1996.
[9] S. Haykin, Neural Networks: A Comprehensive Foundation. Prentice-Hall, New Jersey, 1999.
[10] 彭國軒,快速物件辨認與定位-環狀樣板比對,清華大學碩士論文, 2003.
[11] D.P. Huttenlocher, G.A. Klanderman, and W.J. Rucklidge, “Comparing images using the Hausdorff distance,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 9, pp.850-863, 1993.
[12] D.P. Huttenlocher, R.H. Lilien, and C.F. Olson, “View-based recognition using an eigenspace approximation to the Hausdorff measure,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.21, no.9, 1999.
[13] Oh-Kyu Kwon, Dong-Gyu Sim and, Rae-Hong Park, “ Robust Hausdorff distance matching algorithms using pyramidal structures,” Pattern Recognition, vol.34, no.10, pp.2005-2013, 2001.
[14] Xilin Yi and Octavia I. Camps, “Line-based recognition using a multi-dimensional Hausdorff distance,” IEEE. Trans. on Pattern Analysis And Machine Intelligence, vol.21, no.9, pp.901-916, 1999.
[15] F. Stein and G. Medioni, “Structural indeing : efficient 2-D object recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.14, no.12, pp.1198-1204, 1992.
[16] A.M. Mayez, “An efficient indexing scheme for image storage and recognition,” IEEE Transactions on Industrial Electronics, vol.46, no.2, pp.429–439, 1999.
[17] G. Cortelazzo, G.A. Mian, G. Vezzi, and P. Zamperoni, “Trademark shapes description by string-matching techniques,” Pattern Recognition, vol.27, no. 8, pp.1005–1018, 1994.
[18] H.L. Peng and S.Y. Chen, “Trademark shape recognition using closed contours,” Pattern Recognition Letters, vol.18, pp.791–803, 1997.
[19] C. Rekeczky, A. Ushida, and T. Roska, “Rotation invariant detection of moving and standing objects using analogic neural network algorithms based on ring,” IEICE Transactions on Fundamentals, vol.E78-A, no.10, pp.1316–1329, 1995.
[20] L.A. Torres-Méndez, J.C. Ruiz-Suárez, Luis E. Sucar, and G. Gómez, “Translation, rotation, and scale-Invariant object recognition,” IEEE Transactions on Systems, Man, and Cybernetics, vol.30, no.1, pp.125–130, 2000.
[21] A. Apostolico and Z. Galil, Pattern Matching Algorithms. Oxford University Press, 1997.
[22] H.J. Wolfson, “On curve matching,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no.5, pp. 483–489, 1990.
[23] R.C. Gonzalez and R.E. Woods, Digital Image Processing. Prentice Hall, 2002.
[24] D. Ziou and S. Tabbone, “Edge detection techniques-An overview,” Image Recognition, Analysis, Understanding, and Processing Techniques, vol.8, pp.537-559, 1998.
[25] J. Canny, “A computational approach to edge detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.PAMI-8, no.6, pp.679-698, 1986.
[26] R.A. Wagner and M.J. Fischer, “The string-to-string correction problem,” Journal of the Association for Computing Machinery, vol.21, no.1, pp.168-173, 1974.
[27] W.H. Tsai and S.S. Yu, “Attributed string matching with merging for shape recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.PAMI-7, no.4, pp.453-462, 1985.
[28] J. Lladós, H. Bunke, and E. Martí, “Finding rotational symmetries by cyclic string matching,” Pattern Recognition Letters, vol.18, pp. 1435-1442, 1997.
[29] Serkan Kaygin and M. Mete Bulut, “Shape recognition using attributed string matching with polygon vertices as the primitives,” Pattern Recognition Letters, vol.23, no.1-3, pp. 287-294, 2002.
[30] R.O. Duda and P.E. Hart, “Use of the Hough transformation to detect lines and curves in picture,” Commun. ACM, vol.15, no.1, pp.11-15, 1972.
[31] D.G. Sim and R.H. Park, “Two-dimensional object alignment based on the robust oriented Hausdorff similarity measure,” IEEE Transactions on Image Processing, vol.10, no.3, pp.475-483, 2001.
[32] 陳子超,表面黏著元件之光學檢測,清華大學碩士論文,2003.
[33] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and Machine vision. PWS Publishing, 1999.
[34] B.K.P. Horn, Robot Vision. MIT Press, 1986.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top