跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/31 00:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳晴
研究生(外文):Ching Chen
論文名稱:哼唱選歌的加速方法
論文名稱(外文):Speed-up Mechanisms for Query by Singing
指導教授:張智星張智星引用關係
指導教授(外文):Jyh-Shing Roger Jang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:37
中文關鍵詞:動態時間伸縮哼唱搜尋加速比對
外文關鍵詞:DTWLower BoundQuery by Singing
相關次數:
  • 被引用被引用:2
  • 點閱點閱:118
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
實驗室經由歷屆學長姐的努力,發展出了一套音樂搜尋系統稱之為CBMR(Content-based Music Retrieval),在這個系統中,使用者可以透過哼唱甚至不需要歌詞來做查詢的動作。其比對核心,主要是根據DTW(Dynamic Time Warping)來進行比對,這樣的比對方式可以允許使用者唱快或唱慢,因此辨識率上有九成以上的優異表現。

但相對的,DTW卻也有需要大量運算量的缺點,為了能讓這樣的系統應用更廣,資料庫能夠更龐大,全曲比對速度跟辨識率都提升,只有以往的分散式處理是不夠的,最根本的,還是得回歸到單機版的加速,進而再結合平行處理,才能發展出一個夠強大的系統。

因此本論文的重點在找尋一種演算法,此演算法能夠藉著簡單的運算來求得一個近似DTW值的Lower Bound來當做門檻值,此方法主要目的在減少DTW的運算次數而加快DTW的運算速度。有很多相關的加速研究,但是那些演算法都不適用在音樂比對的特性上,因此,我們針對音樂特性提出以下幾點來加以改良:

一. 改變time warping的範圍限制
二. 切段
三. 相關係數
四. 變異數
Many people in my laboratory have been work on a system named CBMR for many years, and we also have pretty good query achievement. However, our system relies on DTW, an algorithm with massive time and space complexity. The recognition rate is also much lower for searching anywhere.

To build an online music search engine, expending the numbers of the MIDIs in the database and increasing the speed and the stability of the searching engine are very important. Because the search time is proportional to the numbers of songs in the database, speed-up becomes a very important presupposition.

This thesis is about finding the speed-up mechanisms suitable for query by singing.
中文摘要 ……………………………………………………… i
英文摘要 ……………………………………………………… ii
誌謝 ……………………………………………………… iii
目錄 ……………………………………………………… iv
圖表目錄 ……………………………………………………… v
表格目錄 ……………………………………………………… vi
第一章 導論………………………………………………… 1
第二章 音樂的搜尋技術…………………………………… 2
第一節 CBMR……………………………………………… 2
第二節 前處理……………………………………………… 3
第三節 動態時間伸縮……………………………………… 4
第四節 加速的相關研究…………………………………… 7
第五節 實驗室歷年加速相關研究………………………… 8
第三章 改進方法…………………………………………… 10
第一節 Lower Bound的定義……………………………… 10
第二節 演算法一…………………………………………… 16
第三節 改良前人的演算法………………………………… 21
第四節 演算法二…………………………………………… 23
第五節 演算法三:標準差………………………………… 25
第六節 演算法四:相關係數……………………………… 26
第四章 實驗結果與分析…………………………………… 27
第一節 實驗環境…………………………………………… 27
第二節 U和L分析圖……………………………………… 28
第三節 篩選能力評比……………………………………… 29
第四節 辨識率和Flops評比……………………………… 31
第五節 討論………………………………………………… 32
第五章 討論與未來工作…………………………………… 33
第一節 結論………………………………………………… 33
第二節 未來工作…………………………………………… 33
參考文獻 ……………………………………………………… 36
[1] E. Keogh, "Exact Indexing of Dynamic Time Warping," in Proc. of VLDB
Conference, Hong Kong, China, Aug. 20-23, 2002.
[2] Kim, S,. Park, S., & Chu, W. (2001). An Index-based approach for similarity search supporting time warping in large sequence databases. In Proc 17th International Conference on Data Engineering, pp 607-614.
[3] Park, S., Lee, D., & Chu, W. (1999). Fast retrieval of similar subsequences in long sequence databases. In 3rd IEEE Knowledge and Data Engineering Exchange Workshop.
[4] Park, S., Kim, S, & Chu, W. (2001). Segment-based approach for subsequence searches in sequence databases. In Proceedings of the 16th ACM Symposium on Applied Computing, pp. 248-252, Las Vegas, NV, USA.
[5] Park, S., Chu, W., Yoon, J & Hsu, C. (2000). Efficient searches for similar subsequences of different lengths in sequence databases. In Proc. 16th IEEE Int'l Conf. on Data Engineering, pp. 23-32.
[6] Yi, B, K. Jagadish, H & Faloutsos (1998). Efficient retrieval of similar time sequences under time warping. In ICDE 98, pp 23-27.

[7]Simon Sheu , “Effective Filtering for Nearest-Neighbors Queries in Large
Time-Series Databases” , Taiwan , 2003
[8].Teddy Siu Fung Fong, Man Hon Wong(2003), “Efficient Subsequence Matching for Sequences Databases under Time Warping”, inSeventh International Database Engineering and Applications Symposium (IDEAS'03) pp.139
[9] Sanghyun Park, Wesley W. Chu, Jeehee Yoon, Chihcheng Hsu , (2000)“Efficient Searches for Similar Subsequences of Different Lengths in Sequence Databases” 16th International Conference on Data Engineering pp.23
[10] Antonin Guttman. R-tree: a dynamic index structure for spatial searching.
Proc. ACM SIGMOD Conf. on Management of Data, 322-331, 1990.
[11] Y. Zhu, and
D. Shasha. Warping Indexes with Envelope Transforms for Query by Humming. Proc. 2003 ACM SIGMOD
Conf. on Management of Data. pp. 181-192
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top