跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.30) 您好!臺灣時間:2021/07/25 10:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林忠誠
論文名稱:基於本體論與標準物件以遞增式學習來理解影像
論文名稱(外文):Increnental learning in understanding images based on ontology and canonical objects
指導教授:蘇豐文蘇豐文引用關係
指導教授(外文):Von-Wun Soo
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊系統與應用研究所
學門:電算機學門
學類:系統設計學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:43
中文關鍵詞:學習本體論低階層技術高階層技術影像擷取推論
相關次數:
  • 被引用被引用:2
  • 點閱點閱:119
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:3
在多媒體的網路世界裡,電腦若能對影像能有更深入的了解,將會有很大的進步。本篇論文對影像上結合了低階層技術和高階層技術,並導入本體論,使系統可以對影像有更深入的理解,成為一個更智慧的系統。
本篇論文的主要目標為「使系統了解影像」,將低階層架技術和高階層技術的結合,並且導入本體論的概念,是本篇論文的研究重點,並設計一個影像擷取系統實作,來測試本論文所提出來的方法。此系統利用了低階層架構中的自動辨識技術,高階層架構中的自然語言處理技術,導入本體論裡的推論機制,並且加入了學習機制,利用這些技術來整合出本篇論文裡的系統。藉由這些技術整合,可以使系統可以對影像有更進一步的理解,在未來的將會有更廣泛的應用。
本篇論文利用不同實驗的方法,來測試此影像擷取系統的特性,包含有推論、學習和多模式搜尋方式,實驗的結果可以顯示在有推論機制的系統裡,所能逹到的效能;且在有學習機制下,在不同的物件數下,會對搜尋造成什麼影響;且本篇論文是結合低階層架構和高階層架構,所以在搜尋的方式也結合起來,不僅只有文字或影像,此系統可以接受二種不同模式的搜尋方式。
               目錄
第一章 導論
第一節 前言……………………………………… 1
第二節 動機……………………………………… 2
第三節 論文架構………………………………… 3
第二章 文獻採討
第一節 本體論…………………………………… 4
第二節 影像處理………………………………… 5
第三節 相關研究………………………………… 8
第三章 系統設計與架構
第一節 系統簡介………………………………… 11
第二節 系統架構………………………………… 14
一、 低階層架構……………………………… 15
二、 高階層架構……………………………… 22
三、 比對……………………………………… 27
四、 遞增式學習……………………………… 29
第四章 系統展示與實驗
第一節 系統展示………………………………… 32
第二節 實驗……………………………………… 32
一、 顏色實驗………………………………… 33
二、 推理實驗………………………………… 34
三、 學習實驗………………………………… 37
四、 影像搜尋實驗…………………………… 40
第三節 實驗討論………………………………… 42
第五章 結論與未來研究方向
第一節 結論……………………………………… 43
第二節 未來研究方向…………………………… 43
參考文獻
附錄
附件一 實體資料
附件二 影像資料
1. “What are Ontologies, and Why Do We Need Them?” , B.Chandrasekaran and John R. Josephson, Ohio State University , IEEE Intelligent Systems 1999.
2. “Do we need an Ontology of Ontologies” , Panel Discussion , Tampere, October 10, 2002
3. “Ontology-Based Image Retrieval” , Eero HyvÄonen, Avril Styrman, and Samppa Saarela, HIIT 2003.
4. “Intelligent Image Retrieval and Browsing Using Semantic Web Techniques- A Case Study”, Eero Hyvonen, Samppa Saarela, and Viljanen, SEIPA Conference , September 2003.
5. “Object Boundary Detection for Ontology-based Image Classfiction”, Lei Wang , Latifur Khan and Casey Breen, ACM SIGKDD, pp. 51-61, Edmonton, Alberta, Canada, July, 2002
6. “Adventures in HSV space” , Darrin Cardani
7. “Image Databases – Search and Retrieval of Digital Imagery”, edited by Vittorio Castelli and Lawrence D. Bergman, Book 2002.
8. CYC , http://www.cyc.com
9. “DAMLJessKB : A Tool for Reasoning with the Semantic Web” , Joe Kopena , William C. Regli*, ISWC 2003.
10. “Ontology Inference Layer OIL”, I. Horrocks, D. Fensel, J. Broekstra, S. Decker , M. Erdmann , C. Goble, F. Van Harmelen, M. Klein, S. Staab, and R. Studer. http://www.ontoknowledge.org/oil.
11. “The semantic Web and its languages”, Dieter Fensel
12. “The Semantic Web – on the respective Roles of XML and RDF”, Stefan Decker , Frank van Harmelen , Jeen Broekstra , Michael Erdmann , Dieter Fensel , Ian Horrocks , Michel Klein , Sergey Melnik.
13. “Triple – An RDF Query, Inference, and Transformation Language”, Michael Sintek, Stefan Decker.
14. “F-OWL: An OWL Inference Engine in Flora-2”, Department of Computer Science & Electrical Engineering, UMBC
15. “OIL: An ontology infrastructure for the semantic web”, Dieter Fensel, Frank van Harmelen, Ian Horrocks, Deborah L. McGuinness, and Peter F. Patel-Schneider, IEEE Intelligent Systems, 16(2):38-45, 2001.
16. “Automated Semantic Annotation and Retrieval Based on Sharable Ontology and Case-based Learning Techniques” , Von-Wun Soo, Chen-Yu Lee, Chung-Cheng Lin , Shu Lei Chen , Ching-chih Chen, JCDL 2003.
17. Quicklook , http://quicklook.itc.cnr.it/
18. “The QuickLook image search engine”, G. Ciocca, R. Schettini, Journal of Image and Graphics, Vol5, 2000.
19. “Query by Image and Video Content: The QBIC System”, M.Filickner, Harpreet Sawhney, Wayne Niblack, Jonathan Ashley, W. Huang, Byron Dom, Monika Gorkani, Jim Hafine, Denis Lee, Draguti Petkovic, David Steele, and Peter Yanker, IEEE 1995.
20. “VisualSEEk: a fully automated content-based image query system” John R. Smith and Shih-Fu Chang. ACM Multimedia 96.
21. “PicToSeek: combining color and shape invariant features for image retrieval”
Gevers, T. and Smeulders, A.W.M. IEEE Transactions on Image Processing,Volume: 9 1 , Jan. 2000 , Page(s): 102 -119
22. “The PicToSeek WWW Image Search System”, Theo Gevers and Arnold W. M. Smeulders
23. http://ecogrid.nchc.org.tw/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top