跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/27 10:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王琮鴻
研究生(外文):tsung-hong Wang
論文名稱:金屬/氧化鋯/半導體電容器與場效電晶體之製作與電性分析
論文名稱(外文):The Fabrication and Characterization of Metal/ ZrO2/Si(p-type) Capacitors and Field-effect transistors
指導教授:李雅明李雅明引用關係
指導教授(外文):Prof. Joseph Ya-Min Lee
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:81
中文關鍵詞:氧化鋯電流機制
外文關鍵詞:ZrO2mechanism
相關次數:
  • 被引用被引用:4
  • 點閱點閱:142
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
我們研究氧化鋯電流機制和溫度與電場函釋有關,製備金屬(Al)/氧化鋯(ZrO2)/半導體(p-Si)結構的電容器,並對元件作基本的變溫電性量測,在負偏壓下,在越高溫時(375K~450K)以及在低電場下(0.81~1.40MV/cm)機制為修正型蕭基發射,從修正型蕭基發射方程式所萃取出來的能障高( )為1.06 eV,在高電場(1.50~2.25 MV/cm)及高溫之下(375K~450K),ZrO2薄膜本體的電流傳導機制為修正型普爾-法蘭克發射所主導,所得到的ZrO2薄膜本體捕獲中心的能帶高為0.83 eV。在正偏壓下,低電場(0.20~0.60 MV/cm)及高溫之下(425K~450K),ZrO2/Si界面間的電流傳導機制為蕭基發射所主導,其能障為1.0eV。從這些結果,我們可以得到Al/ ZrO2/p-Si的能帶圖
我們成功地製作了N通道的金屬(Al)/氧化鋯(ZrO2)/半導體(p-Si)的場效電晶體,我們使用射頻磁控濺鍍法沈積ZrO2薄膜,在基本電性上的表現,如:ID-VD,ID-VG及C-V等,,且發現臨界電壓約在0.20V,最小的次臨界斜率是272 mV/dec.,在VD=0.1V下,ION/IOFF的比例只有四個數量級之多。經由次臨界斜率St=2.3(kT/q)[1+(CD+Cit)/Cox]的計算,可以得到界面缺陷電荷密度(Dit)為1.35x1013 cm-2-eV-1。
接下來,至於材料物性方面,我們也作了SIMS、XRD和ESCA等分析,了解ZrO2薄膜組成。
經由和傳統SiO2電晶體作一比較,發現電晶體特性及相關參數沒有傳統SiO2電晶體好,但由於熱穩定性較Ta2O5好,所以ZrO2非常適合當作下一代電晶體的閘極氧化層材料。
The electrical conduction mechanism in zirconium oxide (ZrO2) thin films as a function of temperature T and electric field E was studied. Al/ZrO2/p-Si metal-insulator-semiconductor (MIS) capacitors were fabricated. With the Al electrode biased negative, the conduction mechanism in the electrical field of 0.81 MV/cm <E< 1.40 MV/cm and in the temperature range of 375 K <T< 450 K is found to be modified Schottky emission. The intrinsic barrier height between Al and ZrO2 is 1.06 eV. At higher electrical fields of 1.50 MV/cm <E< 2.25 MV/cm and higher temperatures of 375 K <T< 450 K, the electrical conduction is dominated by modified Poole-Frenkel emission. The extracted trap barrier is 0.83 eV. With the Al electrode biased positive, the conduction mechanism is found to be Schottky emission at the electrical field 0.20 MV/cm <E< 0.60 MV/cm and higher temperature range of 425 K <T< 450 K. The barrier height between Si and ZrO2 is 1.0 eV. Based on these results, an energy band diagram of the Al/ ZrO2/p-Si system is proposed.
N-channel metal-oxide-semiconductor field effect transistors (MOSFETs) using ZrO2 gate oxide were fabricated successfully. The ZrO2 films were deposited by RF magnetron sputtering. The C-V, ID-VD and ID–VG characteristics are measured. The threshold voltage was 0.20 V. The minimum subthreshold swing was 272 mV/dec. The ION/IOFF ratio is about 104 at VD=0.1 V. Since St=2.3(kT/q)[1+(CD+Cit)/Cox], the interface trapped charge density Dit is extracted to be about 1.35x1013 cm-2-eV-1.
Secondary ion mass spectrometry (SIMS), X-ray diffraction (XRD), electron spectroscopy for chemical analysic (ESCA) and transmission electron microscope (TEM) were used to examine the material properties of ZrO2.
A comparison with MOSFETs using SiO2 gate oxides was made. The ZrO2/Si interface is generally inferior compared with that of the SiO2/Si interface. But the ZrO2/Si interface is comparable to that of the Ta2O5/Si interface. The thermodynamic stability of ZrO2 gate oxide is much better than that of Ta2O5 gate oxide. In the future, MOSFETs with ZrO2 gate oxide will be a promising candidate for sub-0.1 mm MOSFETs.
目 錄

第一章 緒論--------------------------------------------------------------------------1
1.1 高介電常數(High-κ)薄膜於極大型積體電路(ULSI)的發展------------1
1.2高介電常數薄膜在DRAM上的應用------------------------------------------2
1.3 ZrO2薄膜的製備方法-------------------------------------------------------------3
1.4 High-κ薄膜於MOSFET閘極氧化層(Gate Oxide)的發展----------------3
1.5 本論文的研究方向----------------------------------------------------------------4
第二章 熱穩定性(Thermodynamic Stability)之探討---------------6
2.1 「熱穩定性」理論簡介-------------------------------------------------------------6
2.2 矽化物(Silicide)及矽酸鹽(Silicate)的產生----------------------------------7
第三章 氧化鋯(ZrO2)薄膜元件的製備-------------------------------------9
3.1 射頻磁控濺鍍法(RF Magnetron Sputtering)的簡介----------------------9
3.2 晶片背面歐姆接面(Ohmic contact)的製備-----------------------------------9
3.3氧化鋯(ZrO2)薄膜的成長-------------------------------------------------------10
3.4氧化鋯(ZrO2)薄膜電容器的製備----------------------------------------------11
3.5氧化鋯(ZrO2)薄膜電晶體的製備----------------------------------------------11
3.6 量測使用儀器---------------------------------------------------------------13
第四章 氧化鋯(ZrO2)薄膜基本介紹及物性量測分析--------------15
4.1 ZrO2薄膜的基本介紹-----------------------------------------------------------15
4.2 二次離子質譜儀縱深分佈之分析---------------------------------------------16
4.3 X-Ray(x-ray diffraction) 繞射分析--------------------------------------------17
4.4 電子能譜儀之分析--------------------------------------------------------------17
4.5穿隧式電子顯微鏡照相分析---------------------------------------------------18

第五章 AL/ZrO2/Silicon電容器基本電性及漏電流機制分析---19
5.1電流-電壓(I-V)特性曲線量測--------------------------------------------------19
5.2電容-電壓(C-V)特性曲線量測------------------------------------------------19
5.3 漏電流傳導機制之簡介---------------------------------------------------------20
5.3.1 蕭基發射(Schottky emission)-------------------------------------------21
5.3.2 修正型蕭基發射(Modified Schottky emission)----------------------22
5.3.3普爾-法蘭克發射(Poole-Frenkel Emission)--------------------------23
5.3.4傅勒-諾德翰穿隧(Fowler-Nordheim Tunneling)---------------------24
5.3.5歐姆傳導(Ohmic Conduction)----------------------------------------24
5.4 MIS結構電容器與溫度變化之漏電流傳導機制分析---------------------24
5.5 本章結論---------------------------------------------------------------------------29
第六章 Al/ZrO2/Silicon場效電晶體基本電性量測------------------31
6.1 IDS-VDS 曲線的特性探討------------------------------------------------------31
6.2 IDS-VGS 曲線的特性探討------------------------------------------------------31
6.3 次臨界斜率(Sub-threshold Swing)--------------------------------------------32
6.4 臨界電壓(VT)的粹取-----------------------------------------------------------33
6.5 遷移率(Mobility)的探討-------------------------------------------------------33
第七章 結論------------------------------------------------------------------------36
Reference
Experimental Diagrams and Tables
Appendix
A. 電晶體製程之三道光罩圖
Reference
[1] H. S. Momose, M. Ono, T. Yoshitomi, T. Ohguro, S. Makamura, M. Saito, and H. Iwai, “1.5 nm Direct-tunneling Gate Oxide Si MOSFET’s,” IEEE Trans. Electron Devices, vol. 43, pp. 1233–1241, August 1996.
[2] J. L. Autran, R. Devine, C. Chaneliere, and B. Balland, “Fabrication and Characterization of Si-MOSFET’s with PECVD Amorphous Ta2O5 Gate Insulator,” IEEE Electron Device Lett., vol. 18, pp. 447–449, September 1997.
[3] C. Chaneliere, S. Four, J. L. Autran, R. A. B. Devine, and N. P. Sandler, “Properties of Amorphous and Crystalline Ta2O5 Thin Films Deposited on Si from Ta(OC2H5)5 precursor,” J. Appl. Phys., vol. 83, no. 9, pp. 4823-4829, May 1998.
[4] Q. Lu, D. Park, A. Kalnitsky, C. Chang, C. C. Cheng, S. P. Tay, T. J. King, and C. Hu, “Leakage Current Comparison between Ultra-Thin Ta2O5 Films and Conventional Gate Dielectrics,” IEEE Electron Device Lett., vol. 19, no. 9, pp. 341-342, September 1998.
[5] D. Park, Y. King, Q. Lu, T. J. King, C. Hu, A. Kalnitsky, S. P. Tay, and C. C. Cheng, “Transistor Characterization with Ta2O5 Gate Dielectric,” IEEE Electron Device Lett., vol. 19, no. 11, pp. 441-443, November 1998.
[6]B. C. Lai, N. Kung, and J. Y. Lee, “A Study on the Capacitance -voltage Characteristics of Metal-Ta2O5-silicon Capacitors for Very Large Scale Integration Metal-Oxide-Semiconductor Gate Oxide Applications,” J. Appl. Phys., vol. 85, no. 8, pp. 4087-4090, April 1999.
[7] J. C. Yu, B. C. Lai, and J. Y. Lee, “Fabrication and Characterization of Metal-Oxide-Semiconductor Field-Effect Transistors and Gated Diodes Using Ta2O5 Gate Oxide,” IEEE Electron Device Lett., vol. 21, no. 11, pp. 537-539, November 2000.
[8] B. C. Lai, J. C. Yu, and J. Y. Lee, “Ta2O5/Silicon Barrier Height Measured from MOSFETs Fabrication with Ta2O5 Gated Dielectric,” IEEE Electron Device Lett., vol. 22, no. 5, pp. 221-223, May 2001.
[9] B. Cheng, M. Cao, R. Rao, A. Inani, P. V. Voorde, W. M. Greene, M. C. Stock, Z. Yu, and M. Zeitzoff, “The Impact of High-K Gate Dielectrics and Metal Gate Electrodes on Sub-100 nm MOSFET’s,” IEEE Transactions on Electron Devices, vol. 46, no. 7, pp. 1537-1544, July 1999.
[10]W. J. Qi, R. Nieh. B. H. Lee, L. Kang, Y. Jeon, K. Onishi, T. Ngai, S. Banerjee, and J. C. Lee, “MOSCAP and MOSFET Characteristics using ZrO2 gate dielectric deposited on Si,” in IEDM Tech. Dig., pp. 145-148, 1999.
[11] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “Hafnium and Zirconium Silicates for Advance Gate Dielectrics,” J. Appl. Phys., vol. 87, no. 1, pp. 484-492, January 2000.
[12] Y. Ma., Y. Ono, L. Stecker, D. Evans, and S.T. Hsu, ”Zirconium Oxide Based Gate Dielectrics with Equivalent Oxide Thickness of Less Than 1.0nm and Performance of Submicron MOSFET using a Nitride Gate Replacement Process,” in IEDM Tech. Dig., pp. 149-152, 1999.
[13] D. A. Neumayer, and E. Cariter, “Materials Characterization of ZrO2-SiO2 and HfO2-SiO2 Binary Oxides Deposited by Chemical Solution Deposition,” J. Appl. Phys., vol. 90, no. 4, pp. 1801-1808, August 2001.
[14] T. Ma, S. A. Campbell, R. Smith, N. Hoilien, B. He, W. L. Gladfelter, C. Hobbs, D. Buchanan, C. Taylor, M. Gribelyuk, M. Tiner, Matthew Coppel, and Jang Jung Lee, “Group IVB Metal Oxide High Permittivity Gate Insulators Deposited From Anhydrous Metal Nitrates,” IEEE Transactions on Electron Devices, vol. 48, no. 10, pp. 2348-2356, October 2001.
[15] Z. Luo, “Ultra-thin ZrO2 (or silicate) with High Thermal Stability For CMOS Gate Application,” IEEE Symposium on VLSI Technology Digest of Technical Papers, pp.135-136, 2001
[16] Y. Kim, G. Gebara, M. Frelier, J. Barnett, D. Riley, J. Chen, K. Torres, J. E. Lim, B. Foran, F. Shaapur, A. Agarwal, P. Lysaght, G. A. Brown, C. Young, S. Borthakur, H. J. Li, B. Nguyen, P. Zeitzoff, G. Bersuker, D. Derro, R. Bergmann, R. W. Murto, A. Hou, H.R. Huff, E. Shero, C. Pomarede, M. Givans, M. Mazanez, and C. Werkhoven, “Conventional N-channel MOSFET Device Using Single Layer HfO2 and ZrO2 as High-k Fate Dielectrics with Polysilicon Gate Electrode,” in IEDM Tech. Dig., pp. 455-458, 2001.
[17] M. Gutowski, J. E. Jaffe, C. L. Liu, M. Stoker, R. I. Hegde, R. S. Rai, and P. J. Tobin, “Thermodynamic stability of High-K Dielectric metal oxide ZrO2 and HfO2 in Contact with Si and SiO2,” Appl. Phys. Lett., vol. 80, no. 11, pp. 1897-1899, March 2002.
[18] J Y. Min Lee and B. C. Lai, “The Electrical Properties of High Dielectric Constant and Ferroelectric Thin Films for Very Large Scale Integration (VLSI) Circuit,” p. 53,2001
[19] W. J. Qi, R. Nieh, B. H. Lee, L. Kang, Y. Jeon, and J. C. Lee ”Electrical and Reliability Characteristics of ZrO2 Deposited Directly on Si for Gate Dielectric Application,” Appl. Phys. Lett., vol. 77, no. 20, pp. 3296-3271, November 2000.
[20] H. Watanable, ”Interface Engineering of a ZrO2/SiO2/Si Layered Structure by in Situ Reoxidation and its Oxygen-pressure-dependent Thermal Stability,” Appl. Phys. Lett., vol. 78, no.24, pp. 3803-3805, June 2001.
[21] J. P. Chang and Y.-S. Lin, “Dielectric Property and Conduction Mechanism of Ultrathin Zirconium Oxide Films,” Appl. Phys. Lett., pp .3666-3668, vol. 79, no. 22, November 2001.
[22] D. K. Schroder, Semiconductor Material and Device Characteristics, Wiley, Arizona, 1998.
[23] K. J. Hubbard and D. G. Schlom, “Thermodynamic Stability of Binary Oxides in Contact with Silicon,” J. Mater. Res., vol. 11, no. 11, pp. 2757–2776, 1996.
[24] T. S. Jeon, J. M. White, and D. L. Kwong, ”Thermal Stability of Ultrathin ZrO2 Films Prepared by Chemical Vapor Depositor on Si(100),” Appl. Phys. Lett., vol. 78, no. 4, pp. 368-370, January 2001.
[25] C. H. Lee, H. F. Luan, W. P. Bai, S. J. Lee, T. S. Jeon, Y. Senzaki, D. Roberts, and D. L. Kwong, “MOS Cracteristics of Ultra Thin Rapid Thermal CVD ZrO2 and Zr Silicate Gate Dielectrics,” in IEDM Tech. Dig., pp. 27-30, 2000.
[26] S. M. Sze, Physics of Semiconductor Device, 2nd ed., Wiley, New York, 1981.
[27] C. R. Crowell and S. M. Sze, “Current Transport in Metal -Semiconductor Barriers,” Solid State Electron., vol 9, pp. 1035-1048, June 1966.
[28] J. R. Yeargan, H. L. Taylor, “The Poole-Frenkel Effect with Compensation Present,” J. Appl. Phys. vol. 39, no. 12, pp. 5600-5604 , November 1968.
[29] G.R. Fox, and S.B. Krupanidhi, “Nonlinear Electrical Properties of Lead-Lanthanum-Titanate Thin Films Deposited by Multi-Ion-Beam Reactive Sputtering,” J. Appl. Phys., vol. 74, no. 3, pp. 1949-1959, August 1993.
[30] D. A. Neamen,“Semiconductor Physics & Devices,” 2nd Ed., Mc Graw-Hill, Inc., 1998.
[31] I H. Ishii, A. Nakajima, and S. Yokayama, “Growth and Electrical Properties of Atomic-layer Deposited ZrO2/Si-nitride stack gate dielectrics,” J. Appl. Phys. vol. 95, no. 2, pp. 536-542, January 2004.
[32] T. Yamaguchi, H. Satake, N. Fukushima and A. Toriumi, “Band Diagram Carrier Conduction Mechanism in ZrO2/Zr-silicate/Si MIS Structure Fabricated by Pulsed-laser-ablation Deposition,” in IEDM Tech. Dig., pp. 19-22, 2000.
[33] 張哲維,氧化鋯薄膜電容器與金屬/氧化鋯/半導體場效電晶體之電性分析,國立清華大學碩士論文,民國九十二年七月.
[34] K. Chen, H. C. Wann, J. Dunster, P. K. Ko, C. Hu, “MOSFET Carrier Mobility Model Based on Gate Oxide Thickness, Threshold Voltage and Gate Voltages,” Solid-State Electronics vol. 39, no. 10, pp. 1515-1518, 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top