跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/31 02:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:胡喻評
研究生(外文):Yu-Ping Hu
論文名稱:金屬/鐵電層/絕緣層/矽結構電容之試製與電性分析
論文名稱(外文):The electrical properties of metal-ferroelectric-insulator-silicon(MFIS) structures for non-volatile memory applications
指導教授:李雅明李雅明引用關係
指導教授(外文):Ya-Min Lee
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:77
中文關鍵詞:鐵電材料鋯鈦酸鉛
外文關鍵詞:ferroelectricPZTMFIS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:277
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以射頻磁控濺鍍法製備金屬-鐵電(鋯鈦酸鉛)-絕緣層-半導體電容。本實驗採用三種不同絕緣層(insulator) La2O3, HfO2以及Dy2O3,以射頻磁控濺鍍法方式,沉積不同厚度當作緩衝層(buffer layer)。而後經由不同溫度的熱退火處理後,再以射頻磁控濺鍍法沈積PZT,最後再以lift-off的方式製作上電極,由此完成樣品的製作。自發性極化的特性是鐵電材料應用於非發揮性記憶體的主要精神,故本實驗主要是藉由電容-電壓以及電流-電壓的量測探討鐵電材料在其中所扮演的角色。
在本實驗中我們成功的製作金屬/鐵電薄膜(PZT)/絕緣體(Dy2O3)/半導體(p-Si)電容器,並對其電性作分析,由電容-電壓的量測結果,我們可發現其C-V曲線走向在掃瞄振幅電壓小於8V時為順時針走向,而在掃瞄振幅電壓大於8V時為逆時針走向,這表示在當外加電壓小於8V時,C-V走向是鐵電極化在主導;當外加電壓大於8V時,電荷注入的影響大於鐵電極化,因此C-V走向是電荷注入在主導。關於矯頑電場與記憶窗之間的關係也針對文獻上的結果與本實驗所得之結果有進一步的探討與分析,結果顯示在振幅電壓在鐵電極化主導時,符合公式 �幀window=2dfEc ,因為當電壓大於8V後,C-V曲線將由電荷注入主宰而非鐵電極化來主宰。而在電流-電壓的量測中,我們利用能帶圖配合鐵電材料的特性,成功的解釋在不同偏壓下的漏電流現象;同時,由漏電流的等級在以Dy2O3為絕緣層的樣品(在10 V時,漏電流密度由室溫1x10-7 A/cm2到450 K漏電流密度2x10-2 A/cm2)可知絕緣層成功的扮演降低漏電流的角色。
The electrical characteristics of metal-ferroelectric-insulator-silicon (MFIS) structures are studied. The ferroelectric layer is lead-zirconate-titanate (PZT). High dielectric constant films of La2O3 , HfO2 and Dy2O3 are used as the insulator layer . This structure is studied for the potential application of non-volatile memory devices. The PZT and the high-κ dielectric films are deposited by RF magnetron sputtering. The orientation of C-V hysteresis loop is found to depend on both the polarization of the ferroelectric layer and the trapped charges injected into the insulator layer. For the Al/Pb(Zr0.6,Ti0.4)O3 (PZT)/ La2O3/Si structure , the memory window is agreement with the theoretical result of ΔV= 2dfEc (1.7 V) at an applied voltage of 5 V .The leakage current density is about 10-7 A/cm2 at room temperature and is about 4×10-5 A/cm2 at 425 K under the bias of 10 V . For the Al/PZT/Dy2O3/Si system, the C-V orientation is counterclockwise when the applied voltage is below 8 V and clockwise above 8 V. The memory window measured from the C-V curves first increases and then decreases with the applied sweep voltage. These phenomena are explained by the combination of the polarization of the ferroelectric film and the injected charge effects in the Al/PZT/Dy2O3/Si MFIS system .The leakage current density is about 9×10-7 A/cm2 at room temperature and rises to 5×10-2 A/cm2 at 450K under the bias of 10 V.
第一章 緒論.....1
1.1 鐵電材料鋯鈦酸鉛在記憶體上的應用
1.2 鐵電材料於FeRAM的發展現況
1.3 Metal/ferroelectric/insulator/silicon 結構的應用
1.4 鐵電材料的電性

第二章 鋯鈦酸鉛(PZT)的理論.....5
2.1 鐵電材料的結構
2.2 鐵電材料的特徵
2.3 鐵電材料的開關理論
2.4 鐵電材料的可靠度

第三章 金屬/鐵電薄膜PZT/絕緣體/半導體 電容器的製備..10
3.1 設備與製程
3.2製作問題分析

第四章 M(Al)/F(PZT)/I(Dy2O3 )/Si M(Al)/F(PZT)/I(La2O3 )/Si的C-V電性量測.....16
4.1 四種氧化層電荷對氧化層薄膜的貢獻
4.2電容-電壓(C-V)曲線的基本量測
4.3 C-V曲線漂移與走向的探討
4.4 Al/PZT/ Dy2O3/Si結構之C-V特性
(一) C-V曲線的頻率響應
(二)Poling對C-V曲線之影響
4.5極化強度-電壓(P-V)量測
(一) MFIS電容器的P-V量測
(二)矯頑電場與C-V記憶窗的比較

第五章 電流-電壓(I-V)曲線量測.....29
5.1 MFIS結構之 I-V 變溫量測
5.2 Poling對MFIS結構I-V曲線之影響
5.3 MFIS結構電容器與溫度變化之漏電流傳導機制討論

第六章 結論.....33

Reference.....35
Sputter 操作說明
Process Flow
第一章
[1] 鄭晃忠, “高密度鐵電性記憶體之趨勢發展”, 電子月刊, 第五卷第五期, p.137.
[2] 賴明駿, “極大型積體電路之鐵電材料”, 電子月刊, 第五卷第六期, p. 94.
[3] B. W. Shen., G. Chung, I. C. Chen, D. J. Coleman, Jr., P. S. Ying, R. McKee, M. Yashiro, C. W. Teng., “Scalability of a Trench Capacitor Cell for 64 Mbit DRAM,” in IEDM, Tech Dig., 1989, pp. 27-30.
[4] 何彬明, “FeRAM產品化的崎嶇道路”, 電子月刊, 第五卷第三期, p.166.
[5] T. Kada, “Process and device technologies for 1 Gbit dynamic random-access memory cells,” J. Vac. Sci. Technol. B, vol.13, no. 6, pp. 258-261,1995.
[6] T. Eimori, “A newly designed planar stacked capacitor cell with high dielectric constant film for 256Mbit DRAM,” in IEDM, Tech Dig., 1993, pp. 631-634.
[7] T. Sumi, “Ferroelectric nonvolatile memory technology and its applications,” Jpn. J. Appl. Phys.,pt. 1, vol. 35, no. 2B, pp. 1516-1520, 1996.
[8] S. L. Miller and P. J. McWhorter, “Physics of the ferroelectric nonvolatile memory field effect transistor,”J. Appl. Phys., vol. 72, pp. 5999-6010,December 1992.
[9] R. Moazzami, C. Hu, W.H. Shepherd, “A ferroelectric DRAM cell for high-density NVRAM’s,” IEEE Electron Device Lett., vol.11, pp. 454 –456, 1990.
[10] 李雅明, “鐵電記憶元件”, 電子月刊, 9月號, 1996.
[11] S. Sinharoy, H. Buhay, D. R. Lampe, M. H. Francombe, “Integration of ferroelectric thin films into nonvolatile memories,” J. Vac. Sci. Technol. A, vol. 10,no. 4, pp. 1554-1561, April 1992.
[12] T. Nakamur and Y. Fujimor, “Fabrication Technology of Ferroelectric Memories,” Jpn. J. Appl. Phys., pt. 1, vol. 37, no. 3B, pp. 1325-1327, 1998.
[13] K. Kwang-Ho, Member, IEEE, “Metal-Ferroelectric-Semiconductor (MFS) FET’s Using LiNbO3/Si (100) Structures for Nonvolatile Memory Application,” IEEE Electron Device Lett., vol. 19, pp. 204-206, 1998.
[14] K. Sugibuchi, Y. Kurogi, and N. Endo, “Ferroelectric field-effect memory device using Bi4Ti3O12 film,” J. Appl. Phys., vol.46, pp. 2877-2881, 1975.
[15] N. A. Basit and H. K. Kim, “Growth of highly oriented Pb(Zr,Ti)O3 films on MgO-buffered oxidized Si Substrates and its application to ferroelectric nonvolatile memory field-effect transistors ,“Appl. Phys. Lett., vol. 73, p. 3941, 1998.
[16] H. N. Lee, M. H. Lim, and Y. T. Kim, “Characteristics of Metal / Ferroelectric / Insulator / Semiconductor Field Effect Transistors Using a Pt/SrBi2Ta2O9 /Y2O3 /Si Structure,” Jpn. J. Appl. Phys., pt. 1, vol. 37, no.3B, pp. 1107-1109, 1998.
[17] T. Hirai, Y. Fujisaki, and K. Nagashima, “Preparation of SrBi2Ta2O9 Film at Low Temperatures and fabrication of a Metal / Ferroelectric /Insulator /Semiconductor Field Transistor Using Al/SrBi2Ta2O9/CeO2/Si (100) Structures,” Jpn. J. Appl. Phys., pt. 1 vol. 36, no. 9B, pp. 5908-5911, 1997.
[18] 沈士傑, “淺談快閃式記憶體(Flash Memory)之發展”, 電子月刊, 1996.

第二章
[1] L. L. Hench and J. K. West, J. Wiley and Sons, ”Principle of electronic ceramics”
New York,1990.
[2] H. M. Dulker, P. D. Beal, and J. F. Scott, “Fatigue and switching in ferroelectric memories : theory and experiment,” J. Appl. Phys., vol.68, pp. 5783-5791, March 1990.
[3] Y. Xu, “Ferroelectric Materials and Their Applications,” pp.25-31.
[4] Y. Xu, “Ferroelectric Materials and Their Applications,” pp.7-11.
[5] J. F. Scott, “Device Physics of Ferroelectric Thin-Film Memories,” Jpn. J. Appl. Phys., pt. 1, vol. 38, no. 4B, pp.2272-2274, 1999.
[6] G. W. Dietz, M. Schumacher, and R. Waser, “Leakage Current in Ba0.7Sr0.3TiO3 Thin Films for Ultrahigh-Density Dynamic Random Access Memories ,“ J. Appl. Phys., vol. 82, pp. 2359-2361, April 1997.
[7] B. A. Baumert, L. H. Chang, A. T. Matsuda, T. L. Tsai, C. J. Tracy, R. B. Gregory, P. L. Fejes, N. G. Cave, and W. Chen, “Characterization of Sputtered Barium Strontium Titanate and Strontium Titanate Thin Films,”J. Appl. Phys., vol. 85, pp.2558-2566, January 1997.
[8] I. K. Yoo and S. B. Desu, “Leakage current mechanism and accelerated unified
test lead zirconate thin film capacitor,” ISAF 92 Proceedings, pp. 225-228, 1992.
[9] H. Hu and S. B. Ktupanidhi, “Current-voltage characteristics of ultrafine-grained ferroelectric Pb(Zr,Ti)O3 thin film”, J. Mater. Res., Vol. 9, No. 6, 1994.
[10] J. F. Scott, C. A. Araujo, B. M. Melnick, and L. D. McMillan, “Quantitative measurement of space-charge effects in lead zirconate-titanate memories,” J. Appl. Phys., vol.70, pp. 382-388, December 1991.
[11] C. Sudhama, A. C. Campbell, P. D. Maniar, R. E. Jones, R. Moazzami, and C. J. Mogab, “A model for electrical conduction in metal-ferroelectric-metal thin film capacitor,” J. Appl. phys., vol.75, pp. 1014-1022, March 1994.
[12] N. Inoue and Y. Hayashi, “Effect of imprint on operation and reliability of ferroelectric random acess memory(FeRAM),” IEEE Trans. Electron Devices, vol. 48, pp. 2266-2272, 2001.

第三章
[1] Y. Nakao, “Study on Pb-based ferroelectric thin films prepared by sol-gel method for memory application,” Jpn. J. Appl. Phys., pt. 1, vol. 33, no. 9B, pp. 5265-5267, 1994.
[2] K. Aoki, “Dielectric Properties of (111) and (100) Lead-Zirconate-Titanate Films Prepared by Sol-Gel Technique,” Jpn. J. Appl. Phys., pt.1, vol. 33, no. 9B, pp. 5155-5158, 1994.
[3] W. J. Lin, “Growth and fatigue properties of pulsed laser deposited PLZT thin films with [001] preferred orientation,” J. Mat. Sci.: MATERIALS IN ELECTRONICS, Vol. 7, pp. 409-417, 1996.
[4] T. F. Tseng, R. P. Yang, and K. S. Liu, “Ferroelectric properties of PLZT films deposited on Si3N4-coated Si substrates by pulsed laser deposition process,” Appl. Phys. Lett., vol. 70, pp. 46-48, 1997.
[5] H. Nakasima, “Electrical properties for capacitors of dynamic random access memory on PLZT thin films by metaorganic chemical vapor deposition,” Jpn. J. Appl. Phys., pt. 1, vol.33, no. 9B, pp. 5139-5142, 1994.
[6] C.M. Foster, “Single-crystal PZT thin films prepared by metal-organic chemical vapor deposition:Systematic compositional variation of electronic and optical properties,” J. Appl. Phys., vol. 81, pp. 2349-2357, January 1997.
[7] H. Miki and Y. Ohji, “Uniform Ultra-Thin Pb(Zr,Ti)O3 Films Formed by Metal-Organic Chemical Vapor Deposition and Their Electrical Characteristics,” Jpn. J. Appl. Phys., pt. 1, vol. 33, no. 9B, pp. 5143-5146, 1994.
[8] E. Cattan, “Structure control of PZT buffer layers produced by magnetron sputtering,” Appl. Phys. Lett., vol. 70, pp. 1718-1720, 1997.
[9] O. Auciello, A. I. Kingon, and S. B. Krupanidhi, “Sputter Synthesis of Ferroelectric Films and Heterostructures,” MAT. RES. BULLETIN, p.25, 1996.
[10] L. Wang, “Properties of PbZrTiO3 Thin Films Preapred By R.F. Magnetron Sputtering and Heat Treatment,” Mat. Res. Bull., vol. 25, pp.1495-1501, 1990.
[11] V. Chikarmane, “Effects of post-deposition annealing ambient on the electrical characteristics and phase transformation kinetics of sputtered lead zirconate (65/35) thin film capacitors,” J. Vac. Scl. Technol. A, vol. 10, no. 4, 1992.
[12] S. M. Sze, VLSI Technology, Second Edition, pp. 466-513.
[13] S. Wolf and R. N. Tauber, Silicon Processing for the VLSI Era Vol. 1
[14] T. P. Juan, S.Chen, and J. Y. M. Lee, “Temperature dependence of the current conduction mechanisms in ferroelectric Pb(Zr0.53,Ti0.47)O3 thin films,” J. Appl. Phys., vol. 95, pp. 3121-3125, March 2004.
第四章
[1] F. Y. Chen, Y. K. Fang, and M. J. Sun, “Experimental characterization and modeling of a ferroelectric bulk channel field effect transistor with nonvolatile memory characteristics,” Appl. Phys. Lett., vol. 69, pp.812-814, 1996.
[2] Y. Watanabe, “Epitaxial all-perovskite ferroelectric field effect transistor with a memory retention,” Appl. Phys. Lett., vol. 66, pp.1770-1772, 1995.
[3] K. Nagashima, T. Hirai, H. Koike, Y. Fujisaki and Y. Tarui, “Characteristics of Metal/Ferroelectric/Insulator/Semiconductor Structure Using SrBi 2Ta 2O 9 as the Ferroelectric Material,” Jpn. J. Appl. Phys., pt. 1, vol. 35, no. 4B, pp.1680-1682, 1996.
[4] K. Sugibuchi, Y. Kurogi, and N. Endo, “.Ferroelectric field-effect memory device using Bi4Ti3O12 film,” J. Appl. Phys., vol. 46, pp. 2877-2881, November 1975.
[5] V. Chikarmane, C. Sudhama, J. Kim, J. Lee, and asch, “Effects of post-deposition annealing ambient on the electrical characteristics and phase transformation kinetics of sputtered lead zirconate titanate (65/35) thin film capacitors ,“ J. Vac. Sci. Technol. A, no. 10, pp.1562-1568, 1992.
[6] R. Gastaldi, D. Novosel, M. Dallabora, and G. Casagrande, “A 1-Mbit CMOS EPROM with enhanced verification,” IEEE J. Solid State Circuits, vol. 23, pp. 1150-1156, 1988.
[7] Y. Lin, B. Zhao, H. Peng, Z. Hao, B. Xu, Z. Zhao, and J.Chen, “Asymmetry in the hysteresis loop of Pb(Zr0.53Ti0.47)O3/SiO2/Si structures,” J. Appl. Phys., vol. 86, pp.4467-4472, May 1999.
[8] C. L. Benjamin, K. Nan-hui, and Y. L. Joseph, “A study on the capacitance--voltage characteristics of metal-Ta2O5-silicon capacitors for very large scale integration metal-oxide-semiconductor gate oxide applications ,“J. Appl. Phys., vol. 85, pp. 4087-4090, 1999.
[9] H. Sugiyama, T. Nakaiso, Y. Adachi, M. Noda, M. Okuyama, “An improvement in C-V Characteristics of Metal/Ferroelectric/Insulator/Semiconductor Structure for Ferroelectric Gate FET Memory Using a Silicon Nitride Buffer Layer,” Jpn. J. Appl. Phys., pt. 1, vol. 38, no. 4B, pp.2131-2135, 2000.
[10] D. M. Fleetwood and Senior Member, IEEE Transactions of Nuclear Science, Vol. 39, 1992.
[11] Y. Watanabe, “Energy band diagram of ferroelectric heterostructures and its application to the thermodynamic feasibility of ferroelectric FET ,“ Solid State Ionics, vol. 108, pp. 59-65, 1998.
[12] 鍾維烈, “鐵電體物理學”, 1998
[13] A. Chin, M. Y. Yang, C. L. Sun ,and S. Y. Chen, “Stack Gate PZT/Al2O3 One Transistor Ferroelectric Memory,” IEEE Electron Device Lett., vol. 22, pp. 336-338, 2001.
[14] M. Y. Tang, S. B. Chen, Albert Chin, C. L. Sun, B. C. Lan, and S. Y. Chen, “One-transistor PZT/Al2O3, SBT/Al2O3 and BLT/Al2O3 stacked gate memory,” in IEDM Tech. Dig., 2001, pp. 36.3.1-36.3.4.
[15]T. Kanashima and M. Okuyama, “Analyses of High Frequency Capacitance- Voltage Characteristics of Metal/Ferroelectric/Insulator/Semiconductor
Structure ,” Jpn. J. Appl. Phys., pt. 1, vol. 38, no. 4A, pp.2044-2048, 1999

第五章
[1] M. Yamaguchi, K. Hiraki, T. Homma, T. Nagatomo, and Y. Masuda, “Fabrication and properties of Bi2SiO5 thin films for MFIS structures,” Proc. of 12th IEEE Int. Symp. On Application of Ferroelectrics, 2000, pp. 629-632.
[2] H. N. Lee, Y. T. Kim, C. W. Lee, and S. H. Choh, “Enhancement of memory window in the metal/ferroelectric (YMnO3 )/insulator/semiconductor capacitor,” Proc. of 11th IEEE Int. Symp. On Application of Ferroelectrics, 1998, pp. 39-42.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊