跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/06 01:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾嵩弼
論文名稱:絕緣層覆矽晶片上平面螺旋電感之研究
論文名稱(外文):Study of Planar Spiral Inductors on Ultra-Thin SOI Substrate
指導教授:葉哲良葉哲良引用關係
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:80
中文關鍵詞:電感絕緣層覆矽
外文關鍵詞:Spiral inductorSOI
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:1
無線通訊是一項不可或缺的技術,它的應用涵蓋軍事、商業、民生、學術等方面。射頻積體電路(RFIC)是一個無線系統中負責收發訊號的電路。而晶片上的電感是RFIC上的一個重要的元件,但它的品質參數一直不佳。品質參數是一項電感效能比較的一個指標。有許多因素會影響電感的品質參數,其中一項重要的因素便是基材效應。因此了解絕緣層覆矽(SOI)晶片上的電感特性便是設計SOI RFIC首先要做的步驟。
在此研究中,利用實驗設計的方法來探討電感的四個設計參數和四種不同的基材的影響。圈數對電感的效能有最顯著的影響,而之後的順序是內徑、線距和線寬。電感在高阻值基材上會比在低阻值基材上有更好的效能,主要是因為減低基材內的各種感應電流。而SOI晶片對電感的影響並不大,因為在薄膜矽層內的位移電流和渦電流都很小。因此以SOI晶片來說,高阻值的SOI會提供電感較好的效能,而且它也與積體電路製程相容。
利用田口實驗計劃法預測最佳電感尺寸,經驗證在2.4GHz的最大品質參數是14.2,而在整個探討頻段(0.1GHz-20.1GHz)的預測最佳電感之效能並不如預期,但仍然能提供一個設計的方向。
On-chip spiral inductor is one important component of RFIC, and suffers from low quality factor which is a figure of merit for performance comparison. There are many factors that affect the quality factor of spiral inductor, and one of the critical factors is the substrate effects. Consequently, understanding the behavior of on-ship spiral inductors on PD (partially depleted) SOI is a necessary step before designing a SOI RFIC.
Four design parameters of spiral inductors and four different substrates were studied in this research by adopting a statistical method – Design of Experiment (DOE). Number of turns has most significant effect on the performance of an inductor, and is followed by inner diameter, spacing, and width. Inductor on high resistive wafer has better performance than it on low resistive wafer because the currents induced in the substrate are reduced. The impact of SOI wafers is minor to the performance of an inductor because small displacement current and small eddy current are induced in the thin silicon layer. High resistive SOI wafer will provide better performance for planar spiral inductors, and it is also IC compatible.
By applying Taguchi method, maximum quality factor at 2.4GHz was predicted and verified to be 14.2, but the maximum quality factor over 0.1GHz to 20.1GHz is not as expected.
CHAPTER 1 PLANAR SPIRAL INDUCTOR........................................................................1
1.1 INTRODUCTION ............................................................................................................................................... 1
1.1.1 Research Objective................................................................................................................................. 4
1.2 THEORY .......................................................................................................................................................... 6
1.2.1 Structure of Planar Spiral Inductor......................................................................................................... 6
1.3 LOSS MECHANISMS....................................................................................................................................... 14
1.3.1 Substrate Coupling Loss........................................................................................................................ 15
1.3.2 Resistive Loss ....................................................................................................................................... 17
1.3.3 Radiation Loss...................................................................................................................................... 21
1.4 EQUIVALENT CIRCUIT MODEL ....................................................................................................................... 22
1.4.1 Parameters Extraction .......................................................................................................................... 24
1.4.2 De-embedding ...................................................................................................................................... 25
1.5 FIGURE OF MERITS........................................................................................................................................ 27
1.5.1 Q-factor................................................................................................................................................ 27
1.5.2 Inductance............................................................................................................................................ 27
1.5.3 Self-resonance Frequency ..................................................................................................................... 28
1.5.4 FMI....................................................................................................................................................... 28
1.6 SOI WAFER................................................................................................................................................... 28
1.6.1 Structure of SOI Wafer.......................................................................................................................... 29
CHAPTER 2 DESIGN OF EXPERIMENT (DOE) ..............................................................31
2.1 INTRODUCTION ............................................................................................................................................. 31
2.2 PHASE I PLANNING ....................................................................................................................................... 31
2.3 PHASE II DESIGNING..................................................................................................................................... 33
2.4 PHASE III CONDUCTING................................................................................................................................ 35
2.4.1 Layout................................................................................................................................................... 35
2.4.2 Fabrication Process .............................................................................................................................. 38
CHAPTER 3 SIMULATION AND EXPERIMENT SETUP ...............................................43
3.1 INTRODUCTION ............................................................................................................................................. 43
3.2 SIMULATION.................................................................................................................................................. 43
3.2.1 Study on SOI Substrate......................................................................................................................... 44
3.2.2 Study on Substrate Resistivity................................................................................................................ 53
3.3 MEASUREMENT SETUP.................................................................................................................................. 56
CHAPTER 4 SIMULATION VERIFICATION....................................................................57
4.1 INTRODUCTION ............................................................................................................................................. 57
4.2 DESIGN ......................................................................................................................................................... 57
4.2.1 Metal Pole ............................................................................................................................................ 58
4.2.2 Patterned Trench Isolation .................................................................................................................... 59
4.3 SIMULATION, MEASUREMENT, AND MODEL................................................................................................... 60
4.3.1 Contribution of Currents in Substrate ................................................................................................... 64
4.4 SUMMARY..................................................................................................................................................... 66
CHAPTER 5 ANALYSIS AND CONCLUSION ...................................................................67
5.1 PHASE IV ANALYZING................................................................................................................................... 67
5.1.1 Q at 2.4GHz ......................................................................................................................................... 68
5.1.2 Maximum Q.......................................................................................................................................... 71
5.2 PHASE V CONFIRMING.................................................................................................................................. 73
5.3 CONCLUSION ................................................................................................................................................ 75
5.4 FUTURE WORKS............................................................................................................................................ 76
REFERENCES........................................................................................................................77
[1] J. Kim, et al., “High-performance three dimensional on-chip inductor in SOI
CMOS technology for monolithic RF circuit applications,” IEEE Radio
Frequency Integrated Circuits Symposium, pp591-594, 2003.
[2] A. Thanachayanont, “2-V 3.36-mW 2.5-GHz fourth-order inductorless CMOS
RF bandpass filter,” Asia-Pacific Conference on Circuits and Systems, Vol. 1,
pp127 – 130, October, 2002.
[3] J. B. Kuo, et al., Low-voltage SOI CMOS VLSI devices and circuits, John Wiley
& Sons, Inc., New York, 2001.
[4] C. A. Chang, et al., “Characterization of spiral inductors with patterned floating
structures,” IEEE Transactions on Microwave Theory and Techniques, Vol.
52, Issue: 5, pp1375 – 1381, May, 2004.
[5] S. Yim, et al., “The effect of a ground shield on the characteristics and
performance of spiral inductors,” IEEE Journal on Solid-State Circuit, Vol. 37,
pp237-244, February, 2002.
[6] Y. Choi, et al., “Experimental analysis of the effect of metal thickness on the
quality factor in integrated spiral inductors for RF ICs,” IEEE Electron Device
Letter, Vol. 25, pp76-79, Feb, 2004.
[7] M. Hsieh, et al., “Design fabrication on deep submicron CMOS technology
compatible suspended high-Q spiral inductor,” IEEE Transaction on Electron
Devices, Vol. 51, pp324-331, March, 2004.
[8] K. T. Chan, et al., “Large Q-factor improvement for spiral inductors on silicon
using proton implantation,” IEEE Microwave and Wireless Components
Letters, Vol. 13 , Issue 11 , pp460 – 462, November, 2003.
[9] L. Guo, et al., “High Q multilayer spiral inductor on silicon chip for 5/spl sim/6
GHz,” IEEE Electron Device Letters, Vol. 23, Issue: 8, pp470 – 472, Aug, 2002.
[10] H. M. Hsu, et al., “High Q broadband copper spiral inductors with Q=45 on
proton-bombarded semi-insulating silicon substrate,” IEEE Asia-Pacific
Conference on Proceedings, pp113 – 116, August, 2002.
[11] H. Long, et al., “Enhancement of quality factor in RF-MEMS spiral inductors by
etching out substrate,” International Conference on Microwave and Millimeter
Wave Technology, pp1166 – 1169, August, 2002.
[12] Y. E. Chen, et al., “Q-enhancement of spiral inductor with N+-diffusion
patterned ground shields,” IEEE MTT-S International Microwave Symposium
Digest, Vol. 2, pp1289 – 1292, May, 2001.
[13] D. Kelly, et al., “Improvements to performance of spiral inductors on
insulators,” IEEE MTT-S International Microwave Symposium Digest, Vol. 1,pp541 – 543, June, 2002.
[14] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,”
IEEE Transactions on Parts, Hybrids, and Packaging, Vol. PHP-10, No. 2,
pp101-109, June, 1974.
[15] I. Wolff, et al., “Modeling of Circular Spiral Inductors for MMICs,” MTT-S
International Microwave Symposium Digest, Vol. 87, Issue: 1, pp123 -
126, June, 1987.
[16] E. Zencir, et al., ”Modeling and performance of spiral inductors in SOI CMOS
technology,” IEEE Canadian Conference on Electrical and Computer
Engineering, Vol. 1 , pp408 – 411, May, 2002.
[17] A. M. Niknejad, et al., Design, simulation and applications of inductors and
transformers for Si RF ICs, Kluwer Academic Publisher, London, 2000.
[18] W. L. Stutzman, et al., Antenna theory and design, second edition, John Wiley
& Sons, Inc., New York, 1998.
[19] W. Y. Yin, et al., “Experimental Characterization of On-Chip Inductor and
Capacitor Interconnect: Part II. Shunt Case,” IEEE Transactions on
Magnetics, Vol. 40, Issue: 3, pp1657 – 1663, May, 2004.
[20] S. J. Pan, et al., “Performance Trends of On-Chip Spiral Inductors for RFICs,”
Progress in Electromagnetic Research, PIER 45, pp 123 – 151, 2004
[21] I. J. Bahl, “High-Performance Inductors,” IEEE Transactions on Microwaves
Theory and Techniques, Vol. 49, pp 654 – 664, April, 2001
[22] R. K. Roy, Design of experiments using the Taguchi approach :16 steps to
product and process improvement, John Wiley & Sons, Inc., New York, 2001.
[23] A. Aktas, et al., Pad de-embedding in RF CMOS, Circuits & Devices, MAY,
2001.
[24] Minitab® Realease 14, Minitab, Inc., 2003
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top