跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/03 13:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳照勗
研究生(外文):Chau Shiu Chen
論文名稱:由表面徑向角不對稱分佈探討三五族氮化物、銀薄膜及銀奈米微顆粒鍍於矽(111)表面內留存應力對二次諧波之影響
論文名稱(外文):Strain Induced Asymmetric Nonlinear Optical Distribution of Group-III Nitrides, Ag Films and Ag Nanoparticles on Si(111) by the Study of Surface Angular Azimuthal Scan
指導教授:呂助增
指導教授(外文):Juh-Tzeng Lue
學位類別:博士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:95
中文關鍵詞:二次諧波氮化鎵方位角應力銀微顆粒銀薄膜
外文關鍵詞:SHGGaNStrainnanoparticleclustersilver
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中,我們討論了兩個主題。第一個主題是關於三五族氮化物成長在矽基板的方位角二次諧波研究。我們以分子束磊晶成長AlN/Si(111)及GaN/AlN/Si(111)兩種結構,以RHEED(Reflection High Energy Electron Diffraction), PL(Photoluminescence spectroscopy),XRD(X-ray Diffraction)來證實磊晶薄膜的結構,藉以驗證光學二次諧波對薄膜本身及介面應力的響應。考慮來自於薄膜及介面的非線性響應,我們發現不均勻的介面應力對二次諧波的貢獻為方位角ψ的函數。因此,非線性效應可以提供非破壞性檢測並搭配製程參數檢測磊晶品質。
第二個主題是關於多晶結構之銀薄膜及銀奈米微顆粒成長在矽基板的方位角二次諧波研究。實驗發現成長於Si(111)基板的銀薄膜,以入射基頻光、反射二次諧波的不同偏振組合觀察到有不對稱的方位角二次諧波強度分佈之情形。由於矽基板具有中心對稱性的性質,二次諧波的貢獻來自於銀膜及矽基板表面,因此二次諧波強度不均的現象與不均勻的介面應力有關,而這個現象在銀薄膜經由熱褪火形成銀奈米微顆粒後,觀察方位角二次諧波的結果裡獲得證實。為了進一步觀察應力不均造成的非線性響應,我們觀察了直接以外力施加於矽基板,以及以環氧化系黏濯劑吸附在矽基板上的方位角二次諧波,發現得到相同的不對稱的二次諧波強度響應。
In this dissertation, two topics are discussed. The first part is concerning the rotational anisotropy SHG studies of the group-III nitride compound films on Si(111) substrates. The symmetry behavior of AlN/Si(111) and GaN/AlN/Si(111) structures grown by molecular beam epitaxy (MBE) have been analyzed by measuring the rotational dependence of the polarized second harmonic generation intensity for different polarized fundamental beams. The crystalline structure has also been checked by reflection high-energy electron diffraction (RHEED), X-ray diffraction and photoluminescence (PL) spectroscopy. Considering various contributions of the nonlinear response from the bulk and interfaces, the interface strain implies an nonuniform inhomogeneous intensity variation of second harmonic generation as functions of the surface azimuthal rotation angle ψ.Therefore, the observation of nonlinear optical effect provides a valuable illustration of the epitaxy quality and growth parameter characterization by a nondestructive method.
The second part is about the rotational anisotropy SHG studies of Ag thin films and nanoparticles on Si(111) substrates. The asymmetric distributions of the surface optical second harmonic generation (SHG) through azimuthally angular scans for thin silver films deposited on Si(111) wafers have been detected with different polarizations of output beams. On account of the inversion symmetry of silicon crystals, the SHG for the Ag/Si system is mainly contributed from silver film and silicon surface. In this work, we found that the interface strain implies an asymmetric intensity variation of SHG with respect to the surface azimuthal angle as an ultra thin Ag film is deposited on silicon wafers. This asymmetric behavior is prominent as the deposited silver layer is heated to change from a continuous film to granular nanoparticles. Similar change of the surface asymmetric SHG is observed for a bare Si wafer imposed with an external force or adsorbed with a drop of epoxy glue.
Acknowledgment(誌謝)
Abstract (Chinese)……………………………………………….Ι
Abstract (English)...……………………………………..….ΙΙ
Table of contents…………………………………….…..... IV
List of Figures……………………………...……..…..….VI
List of Tables………………………….…………………...VIII
1.Intruduction……………………………………..…..1
2.Phenomenological Theory of SHG from Si(111) surface…8
2.1 Theory…………………………………………………………8
2.2Bibliography………………………………………….19
3.Experimental Set-up for SHG…………………………20
4.Azimuthal SHG of AlN/Si(111) and GaN/AlN/Si(111)…….23
4.1 Introduction…………………………………………23
4.2 Thory…………………………………………………..27
4.3 Fabrication of Samples…………………………..33
4.4 Results and Discussions……………………………34
4.4.1 Sample Quality…………………………………………34
4.4.2 Azimuthal SHG patterns of AlN/Si(111) and GaN/AlN/Si(111)........................................35
4.5 Conclusion……………………………………………38
4.6 Bibliography…………………………………………39
5. Azimuthal SHG of Ag thin films and Ag nanoparticles on Si(111) substrate....................49
5.1 Introduction…………………………………………49
5.2 Theory…………………………………………………54
5.3 Results and Discussions…………………………59
5.3.1 Fabrication of Samples……………………………59
5.3.2 Comparsion between Ag thin films and nanoparticles on Si(111) substrates………………………60
5.3.3 Strain effect………………………………………64
5.4 Conclusion…………………………….…………66
5.5 Bibliography………………………………………68
6. Summary…………………………………………………86
Appendix A…………………………………………………………89
The hardware construction for the SHG experiments
Appendix B…………………………………………………………90
The software construction for the SHG experiments.
Chapter 1
[1]. P. Fraken, A. E. Hill, C. W. Peters, and G. Weinreich, Phys. Rev. Lett., 7, 118 (1961)
[2]. R. W. Terhune, P. D.Maker, and C. M. Savage, Phys. Rev. Lett. 8, 404 (1962)
[3]. C. S. Wang, Phys. Rev. 173, 908–917 (1968)
[4]. N. Bloembergen, R. K. Chang, and C. H. Lee, Phys. Rev. Lett. 16, 986–989 (1966)
[5]. F. Brown, R. E. Parks, and A. M. Sleeper, Phys. Rev. Lett. 14, 1029 (1965).
[6]. H. Sonnenberg and H. Heffner, J. Opt. Soc. Am. 58, 209 (1968).
[7]. N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, Phys. Rev. 174, 813 (1968).
[8]. J. Rudnick and E. A. Stern, in Polaritons, edited by E. Burstein and F. De Martini (Plenum, New York, 1974)
[9]. J. E. Sipe, V. C. Y. So, M. Fukui, and G. I. Stegeman, Phys. Rev. B 21, 4389 (1980)
[10]. H. J. Simon, D. E. Mitchell, and J. G. Watson, Phys. Rev. Lett. 33, 1531 (1974)
[11]. T. F. Heinz, C. K. Chen, D. Ricard, Y.R. Shen, Phys. Rev. Lett. 48 (7), 478 (1982)
[12]. H. W. K. Tom, T. F. Heinz, and Y. R. Shen, Phys. Rev. Lett. 51 (21) 1983-1986 (1983)
[13]. B. DICK, A. Gierulski, G. Marowsky, G. A. Reider, Appl. Phys B-Photo 38 (2), 107-116 (1985)
[14]. B. DICK, A. Gierulski, G. Marowsky, G. A. Reider, Ber Bunsen Phys. Chem. 89 (3), 346-348 (1985)
[15]. J. E. Spie, D. J. Moss, and H. M. van Driel, Phys. Rev. B 35, 1129 (1987)
Chapter 2
[1]. J. E. Spie, D. J. Moss, and H. M. van Driel, Phys. Rev. B 35, 1129 (1987)
[2]. P. Guyotsionnest, W. Chen and Y. R. Shen, Phys. Rev. B 33, 8254 (1986)
[3]. N. Bioembergen, R. K. Chang, S. S. Jha, and C. H. Lee, Phys. Rev. 174, 813 (1968)
[4]. P. S. Pershan, Phys. Rev. 130, 919 (1963)
[5]. H. W. K. Tom, T. F. Heinz, and Y. R. Shen, Phys. Rev. Lett. 51. 1983 (1983)
[6]. S. V. Popov, Y. P. Svirko, and N. I. Zheludev, Susceptibility tensors for nonlinear optics (Institute of Physics Pub., Bristol, [Eng.]; Philadelphia, Pa, 1995)
Chpater 4
[1]. S. Gwo, C. L. Wu, C. H. Shen, W. H. Chang, T. M. Hsu, J. S. Wang and J. T. Hsu, Appl. Phys. Lett., 84, 3765 (2004)
[2]. C. L. Wu,J. C. Wang,M. H. Chan, Tom T. Chen,and S. Gwo,Appl. Phys. Lett., 83, 4530 (2003)
[3]. C. C. Tzeng and J. T. Lue, Surface Science 216, 579-586(1989)
[4]. C. C. Tzeng and J. T. Lue, Phys. Rev A39, 191(1989)
[5]. J. T. Lue, K. Y. Lo and C. C. Tzeng, IEEE J. Quantum Electronics, 38, 302(1992)
[6]. J. T. Lue, and C. Dai, Phys. Rev. B 47, 13653(1993).
[7]. Y. R Shen, The Principles of Nonlinear Optics(Wiley, New York, 1984).
[8]. H.W.K. Tom, G.D. Aumiller, and C.H. Brito-Cruz. Phys. Rev. Lett. 14, 1438(1988).
[9]. W. A. Shank, C. V. Yen, R. & Hirlimann, C. Phys. Rev. Lett. 51, 900-902(1983)
[10]. T. F. Heinz, M. M. T. Loy, and W. A. Thompson, J. Vac. Sci. Technol. B3, 1467-1470(1985)
[11]. S.A. Akhamanov,. et al. Opt. Commun. 47, 202-204(1983)
[12]. B. F. Levine, Phys. Rev. B7, 2600(1973)
[13]. I. M. Catalano, A. Cingolani, M. Lugara, and A. Minafra, Opt. Commun. 23, 419(1977)
[14]. T. Ishidate, K. Inoue, and M. Aoki, Jpn. J. Appl. Phys. 19, 1641(1980)
[15]. W. P. Lin, P. M. Lundquist, G. K. Wong, E. D. Rippert, and J. B. Ketterson, Appl. Phys. Lett. 63, 2875(1993)
[16]. S. A. Akhmanov, V. I. Emel’yanov, N. I. Koroteev, and N. I. Seminogov, Sov. Phys. Usp. 28, 1084-1154(1985)
[17]. H. W. K. Tom, T. F. Heinz, and Y. R. Shen, Phys. Rev. Lett. 51, 1983-1986(1983)
[18]. N. Grandjean, J. Massies, Appl. Phys. Lett. 71, 1816(1997)
[19]. J.P. Silverira, F. Briones, J. Crys. Growth 201/202, 113(1999)
[20]. R. Beresford, J. Yin, K. Tetz, E. Chason, J. Vac. Sci. Technol. B 18(3), 1431(2000)
[21]. D. J. Bottomley, A. Mito, P. J. Fons, S. Niki, and A. Yamada, IEEE J. Quantum Electron. 33,1294(1997)
[22]. S. V. Govorkov, V. I. Emel’yanov, N. I. Koroteev, G. I. Petrov, I. L. Shumay and V. V. Yakolev: J. Opt. Soc. Am. B6(1989)1117.
[23]. J. Y. Huang, Jpn. J. Appl. Phys., Part 1 33A, 3878(1994)
[24]. I. L. Lyubchanskii, N. N. Dadoenkova, and M. I. Lyubchanskii, Th. Rasing, J.W. Jeong and S.C. Shin, Appl. Phys. Lett. 76, 1848(2000)
[25]. N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, Phys. Rev. 174, 813(1968); 178, 1528(E)(1969)
[26]. M. B. Feller, W. Chen and Y. R. Shen: Phys. Rev. A 43, 6778(1991)
[27]. J. E. Sipe, D. J. Moss, H. M. van Driel, Phys. Rev. B 35, 1129(1987)
[28]. S. S. Jha and N. Bloembergen, Phys. Rev. 171, 891-898(1968)
Chapter 5
[1]. N. Bloembergen and Y. R. Shen, Phys. Rev. 141, 298 (1966)
[2]. M. Weber and A. Liebsch, Phys. Rev. B 35, 7411 (1987)
[3]. A. Liebsch, Phys. Rev. Lett. 61, 1233(1988)
[4]. G. S. Agarwal, S. S. Jha, Sol. State Commun. 41, 499, (1982).
[5]. X. M. Hua, J. I. Gersten, Phys. Rev. B 33, 3756, (1986).
[6]. F. Brown, R. E. Parks and A. M. Sleeper, Phys. Rev. Lett. 14, 1029 (1965)
[7]. S. S. Jha, Phys. Rev. B 140, A2020 (1965)
[8]. S. S. Jha, Phys. Rev. 145, 500(1966)
[9]. N. Bloembergen and P.S. Pershan. Phys. Rev., 128, 606 (1962).
[10]. N. Bloembergen and Y. R. Shen, Phys. Rev. 145, 390 (1966)
[11]. W. L. Schaich and A. Liebsch, Phys. Rev. B 37, 6187 (1988)
[12]. R. Murphy, M. Yeganeh, K. J. Song and E. W. Plummer, Phys. Rev. Lett. 63, 318(1989)
[13]. J. Rudnick and E. A. Stern, Phys. Rev. B 4, 4274 (1971)
[14]. A. Chizmeshya and E. Zaremba, Phys. Rev. B 37, 2805 (1988)
[15]. C. S. Chang and J. T. Lue, Surf. Sci. 393, 231 (1997).
[16]. J. E. Sipe, D. J. Moss and H. M. van Driel, Phys. Rev. B 35, 1129(1987)
[17]. T. F. Heinz, “Nonlinear Surface Electromagnetic Phenomena”, eds. H.E. Ponath and G. I. Stegeman (Elsevier, Amsterdam, 1991), p. 353
[18]. C. C. Tzeng and J. T. Lue, Surf. Sci. 216, 579 (1989).
[19]. C. S. Chen, J. T. Lue, C. L. Wu, S.G. Gwo and K.Y. Lo, J. Phys. Condense. Matter. 15, 6537 (2003).
[20]. C. C. Tzeng, and J. T. Lue, Phys. Rev. A 39, 191 (1989).
[21]. J. M. Howe, Interfaces in Materials (Wiley-Interscience, New York, 1997)
[22]. J. T. Lue, K.Y. Lo, and C. C. Tzeng, IEEE J. Quantum Electron. 38, 302 (1992)
[23]. J. T. Lue and C. Dai, Phys. Rev. B 47, 13653 (1993).
[24]. A. J. Durelli, E. A. Phillips, C. H. Tsao, Introduction to the Theoretical and Experimental Analysis of Stress and Strain.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊