跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/01 15:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇信銘
研究生(外文):Shinn-Ming Sue
論文名稱:內嵌式永磁同步電動機之線性轉矩控制
論文名稱(外文):LINEAR TORQUE CONTROL OF INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR DRIVES
指導教授:潘晴財
指導教授(外文):Professor Ching-Tsai Pan
學位類別:博士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:140
中文關鍵詞:內嵌式永磁同步電動機線性轉矩控制弱磁控制線性最大轉矩電流比控制磁阻轉矩磁飽和效應
外文關鍵詞:interior permanent magnet synchronous motorlinear torque controlfield weakening controllinear maximum torque per ampere controlreluctance torquemagnetic saturation effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:308
  • 評分評分:
  • 下載下載:101
  • 收藏至我的研究室書目清單書目收藏:0
本論文係對於內嵌式永磁同步電動機驅動器提出新型的線性轉矩控制策略,以充分發揮其磁阻轉矩,並仍保有線性轉矩控制的優點。以下則摘要地敘述本論文的主要貢獻。首先針對內嵌式永磁同步電動機在定轉矩極限區之運轉提出一新型的線性轉矩控制策略,使得輸出轉矩與線電流空間向量的大小成正比,其中已經推導並證明得到此線性轉矩控制的一個充分條件,並獲得對應的最大轉矩常數,且在控制上也推導出直交軸電流的封閉數學關係式。此一新型線性轉矩控制策略不但可以充分發揮內嵌式永磁同步電動機之磁阻轉矩,並且可以明顯地增加其定轉矩極限的轉速範圍,因此採用此控制策略可以使內嵌式永磁同步電動機在較高轉速具有比表面黏著式永磁同步電動機更好的性能。其次,吾人再將此線性轉矩控制觀念由定轉矩極限區延伸到更高速的弱磁區,其中不僅推導出其直交軸電流之數學解析式,並建立全區域運轉的理論基礎。本論文可說是在國際上首次將內嵌式永磁同步電動機的轉速區域分為定轉矩極限區、部分弱磁區與全弱磁區三區域,並明確說明如何採用定轉矩極限控制模式或弱磁控制模式以充分利用其磁阻轉矩,其中並提出一個隨轉速不同而改變大小的轉矩限制器,以簡化其實體製作之複雜性。為了進一步減少內嵌式永磁同步電動機穩態運轉時之銅損,並且保持動態運轉時快速的響應,吾人再提出一線性最大轉矩電流比控制策略,並將該控制策略延伸到全轉速區域,有關其詳細理論基礎均詳述於本論文中。最後,為獲得更精確的轉矩控制,吾人進一步考量內嵌式永磁同步電動機之磁飽和效應,即採用一個三階多項式以更精確的近似交軸磁交鏈的磁飽和效應,並根據此新模型推導及實現新的線性最大轉矩電流比控制策略。除了上述理論基礎之推導與模擬分析外以,在本論文中並依所創理論實際製作一雛型驅動器,由其實測結果與理論分析結果互相驗證,證明本論文所創新之方法確實可行並能達到預期成效。
In this dissertation, new torque control strategies for interior permanent magnet synchronous motor (IPMSM) drives are proposed to fully exploit the reluctance torque as well as to preserve the merit of the simple linear torque control scheme. Main contributions of the dissertation are summarized as follows. Firstly, a novel linear torque control strategy is presented for IPMSM drives in the constant torque limit region such that the resulting torque is proportional to the line current magnitude. A sufficient condition for the existence of the linear torque control is derived and the corresponding torque constant is also maximized. In addition, a closed form relation between the and for the proposed torque control strategy is derived. Not only can the proposed linear torque control strategy fully exploit the reluctance torque to provide a much wider constant torque operation region, but also provide a much better performance at high speed region as compared with that of the surface mounted PMSM. Secondly, a new field weakening control of a linear torque controlled IPMSM drive is presented. The proposed control further extends the operational speed range of the previous linear torque control (LTC) from the constant torque limit range to the field weakening range such that the IPMSM drive can operate over much wider speed range. The theoretical basis of the proposed field weakening control is first proposed and the corresponding analytical forms are also derived. The entire operational regions of an IPMSM are divided into three regions according to the motor speed, namely the constant torque limit region (Region I), the partial field weakening region (Region II), and the full field weakening region (Region III). However, only two control modes, namely the constant torque limit control mode and the field weakening control mode, are required. A region detector is proposed to choose the correct control mode efficiently according to the motor speed and the demanded torque. In addition, to fully utilize the maximum torque capability in the field weakening region, a variable line current magnitude limiter is also proposed to simplify the complexity of the control algorithm. Thirdly, a linear maximum torque per ampere (LMTPA) control is proposed for IPMSM drives to further minimize the copper loss during the steady state operation as well as to achieve fast transient response. The proposed LMTPA is also extended to the entire field weakening region to achieve full range maximum torque per ampere control. Sound theoretical basis is also provided in the context. Finally, a new saturated q-axis flux linkage model for an IPMSM is proposed and the corresponding LMTPA control strategy over the full operational speed range is derived. Experimental results are provided to show the improvements of the dynamic as well as the steady state performances for these proposed linear torque control strategies.
CHINESE ABSTRACT--------------------------------------I
ABSTRACT----------------------------------------------II
ACKNOWLEDGEMENTS -------------------------------------IV
CONTENTS-----------------------------------------------V
LIST OF FIGURES---------------------------------------VII
LIST OF TABLES-----------------------------------------XII
1. INTRODUCTION---------------------------------------1
1.1 Motivation-----------------------------------------1
1.2 Literature Survey----------------------------------2
1.3 Contributions of the Dissertation------------------5
1.4 Outline of the Contents----------------------------7
2. A NOVEL TORQUE CONTROL STRATEGY FOR IPMSM DRIVES--------------------------------------------------------10
2.1 Introduction---------------------------------------10
2.2 Mathematical Model of an IPMSM---------------------11
2.3 Optimization of the Torque Constant----------------13
2.4 Implementation of the Proposed Linear Torque Control Strategy-----------------------------------------------19
3. EXTENSION OF THE PROPOSED LTC TO THE FIELD WEAKENING RANGE---------------------------------------27
3.1 Introduction---------------------------------------27
3.2 The Proposed Field Weakening Control28
3.3 Implementation of the Proposed Control Strategy----34
3.4 Experimental Results-------------------------------40
4. THE PROPOSED LTC WITH COPPER LOSS MINIMIZATION-----------------------------------------------------------45
4.1 Introduction---------------------------------------45
4.2 The Proposed Linear Maximum Torque Per Ampere (LMTPA) Control—Constant Torque Limit Region------------------45
4.3 Extension of the Proposed LMTPA to the Field Weakening Region-------------------------------------------------50
4.4 Implementation and Experimental Results of the Proposed LMTPA Control------------------------------------------57
5. CONSIDERATION OF THE MAGNETIC SATURATION EFFECT ON THE PROPOSED LTC---------------------------------70
5.1 Introduction---------------------------------------70
5.2 Saturated Model of an IPMSM------------------------71
5.3 The Proposed Linear Maximum Torque Per Ampere Control Considering Magnetic Saturation------------------------74
5.3.1 Constant Torque Limit Region---------------------74
5.3.2 Partial Field Weakening Region and Full Field Weakening Region---------------------------------------79
5.4 Implementation and Experimental Results------------86
6. CONCLUSIONS----------------------------------------107
REFERENCES---------------------------------------------110
APPENDIX A THE DSP PROGRAM CODE FOR THE SPEED CONTROLLED IPMSM DRIVE---------------------------------117
PUBLICATION LIST---------------------------------------139
[1] I. Takahashi and H. Haga, “Inverter Control Method of IPM Motor to Improve Power Factor of Diode Rectifier,” in Proc. of IEEE-PCC Conf., 2002, pp. 142-147.
[2] H. Murakami, Y. Honda, H. Kiriyama, S. Morimoto, and Y. Takeda, “The Performance Comparison of SPMSM, IPMSM, and SynRM in Use as Air-conditioning Compressor” in Conf. Rec. IEEE-IAS Annual Meeting, 1999, pp. 840-845.
[3] L. Chen, R. Davis, S. Stella, T. Tesch, and A. Fischer-Antze, “Improved Control Techniques for IPM Motor Drives on Vehicle Application,” in Conf. Rec. IEEE-IAS Annual Meeting, 2002, pp. 2051-2056.
[4] J. W. Park, D. H. Koo, J. M. Kim, and H. G. Kim, “High Performance Drive Unit for 2-motor Driven Electric Vehicle,” in Conf. Rec. APEC Annual Meeting, 1999, pp. 443-449.
[5] Z. Q. Zhu, Y. S. Chen, and D. Howe, “Online Optimal Flux-Weakening Control of Permanent-Magnet Brushless AC Drives,” IEEE Trans. Ind. Applicat., vol. 36, no. 6, pp. 1661-1668, Nov./Dec. 2000.
[6] J. Wai and T. M. Jahns, “A New Control Technique for Achieving Wide Constant Power Speed Operation with an Interior PM Alternator Machine,” in Conf. Rec. IEEE-IAS Annual Meeting, 2001, pp. 807-814.
[7] B. H. Bae and S. K. Sul, “Practical Design Criteria of Interior Permanent Magnet Synchronous Motor for 42V Integrated Starter-Generator,” in Conf. Rec. IEEE-IEMDC , 2003, pp. 656-662.
[8] M. A. Rahman and M. A. Hoque, “On-line Adaptive Artificial Neural Network Based Vector Control of Permanent Magnet Synchronous Motors,” IEEE Trans. Energy Conv., vol. 13, no. 4, pp. 311-318, Dec. 1998.
[9] M. A. Rahman, D. M. Vilathgamuwa, M. N. Uddin, and K. J. Tseng, “Nonlinear Control of Interior Permanent-Magnet Synchronous Motor,” IEEE Trans. Ind. Applicat., vol. 39, no. 2, pp. 408-416, Mar./Apr. 2003.
[10] Y. Yi, D. M. Vilathgamuwa, and M. A. Rahman, “Implementation of an Artificial-Neural-Network-Based Real-Time Adaptive Controller for an Interior Permanent-Magnet Motor Drive,” IEEE Trans. Ind. Applicat., vol. 39, no. 1, pp. 96-104, Jan./Feb. 2003.
[11] S. Morimoto, Y. Takeda, and T. Hirasa, “Current Phase Control Methods for Permanent Magnet Synchronous Motors,” IEEE Trans. Power Electron., vol. 5, no. 2, pp. 133-139, Apr. 1990.
[12] T. M. Jahns, G. B. Kliman, and T. W. Neumann, “Interior Permanent-Magnet Synchronous Motors for Adjustable-Speed Drives,” IEEE Trans. Ind. Applicat., vol. 22, no. 4, pp. 738-747, July/Aug. 1986.
[13] S. Morimoto, M. Sanada, and Y. Takeda, “Wide-Speed Operation of Interior Permanent Magnet Synchronous Motors with High-Performance Current Regulator,” IEEE Trans. Ind. Applicat., vol. 30, no. 4, pp. 920-926, July/Aug. 1994.
[14] C. Mademlis and V. G. Agelidis, “On Considering Magnetic Saturation with Maximum Torque to Current Control in Interior Permanent Magnet Synchronous Motor Drives,” IEEE Trans. Energy Conv., vol. 16, no. 3, pp. 246-252, Sep. 2001.
[15] N. Bianchi, S. Bolognani, and M. Zigliotto, “High-Performance PM Synchronous Motor Drive for an Electrical Scooter,” IEEE Trans. Ind. Applicat., vol. 37, no. 5, pp. 1348-1355, Sep./Oct. 2001.
[16] M. N. Uddin, T. S. Radwan, and M. A. Rahman, “Performance of Interior Permanent Magnet Motor Drive Over Wide Speed Range,” IEEE Trans. Energy Conv., vol. 17, no. 1, pp. 79-84, Mar. 2002.
[17] S. Morimoto, Y. Tong, Y. Takeda, and T. Hirasa, “Loss Minimization Control of Permanent Magnet Synchronous Motor Drives,” IEEE Trans. Ind. Electron., vol. 41, no. 5, pp. 511-517, Oct. 1994.
[18] C. Mademlis and N. Margaris, “Loss Minimization in Vector-Controlled Interior Permanent-Magnet Synchronous Motor Drives,” IEEE Trans. Ind. Electron., vol. 49, no. 6, pp. 1344-1347, Dec. 2002.
[19]R. F. Schiferl and T. A. Lipo, “Power Capability of Salient Pole Permanent Magnet Synchronous Motors in Variable Speed Drive Applications,” IEEE Trans. Ind. Applicat., vol. 26, no. 1, pp. 115-123, Jan./Feb. 1990.
[20]N. Bianchi and S. Bolognani, “Parameters and Volt-Ampere Ratings of a Synchronous Motor Drive for Flux-Weakening Applications,” IEEE Trans. Power Electron., vol. 12, no. 5, pp. 895-903, Sep. 1997.
[21]Z. Q. Zhu, Y. S. Chen, and D. Howe, “Maximizing the Flux-Weakening Capability of Permanent Magnet Brushless ac Machines and Drives,” in Proc. of IEEE-PEMC Conf., 2000, pp. 552-557.
[22]W. L. Soong, and N. Ertugrul, “Field- Weakening Performance of Interior Permanent-Magnet Motors,” IEEE Trans. Ind. Applicat., vol. 38, no. 5, pp. 1251-1258, Sep./Oct. 2002.
[23]B. Sneyers, D. W. Novotny, and T. A. Lipo, “Field Weakening in Buried Permanent Magnet AC Motor Drives,” IEEE Trans. Ind. Applicat., vol. IA-21, no. 2, pp. 398-407, Mar./Apr. 1985.
[24]M. A. Rahman and P. Zhou, “Analysis of Brushless Permanent Magnet Synchronous Motors,” IEEE Trans. Ind. Electron., vol. 43, no. 2, pp.256-267, Apr. 1996.
[25]E. Levi, “Saturation Modeling in D-Q Axis Models of Salient Pole Synchronous Machines,” IEEE Trans. Energy Conv., vol. 14, no. 1, pp. 44-50, Mar. 1999.
[26]B. Stumberger, B. Kreca, and B. Hribernik, “Determination of Parameters of Synchronous Motor with Permanent Magnets from Measurement of Load Conditions,” IEEE Trans. Energy Conv., vol. 14, no. 4, pp. 1413-1416, Dec. 1999.
[27]U. Schaible and B. Szabados, “Dynamic Motor Parameter Identification for High Speed Flux Weakening Operation of Brushless Permanent Magnet Synchronous Machines,” IEEE Trans. Energy Conv., vol. 14, no. 3, pp. 486-492, Sep. 1999.
[28]E. Levi and V. A. Levi, “Impact of Dynamic Cross-Saturation on Accuracy of Saturated Synchronous Machine Models,” IEEE Trans. Energy Conv., vol. 15, no. 2, pp. 224-230, June 2000.
[29]G. H. Kang, J. P. Hong, G. T. Kim, and J. W. Park, “Improved Parameter Modeling of Interior Permanent Magnet Synchronous Motor Based on Finite element Analysis,” IEEE Trans. Magnetics, vol. 36, no. 4, pp. 1867-1870, July 2000.
[30]A. H. Wijenayake and P. B. Schmidt, “Modeling and Analysis of Permanent Magnet Synchronous Motor by Taking Saturation and Core Loss into Account,” in Proc. of IEEE-PEDS Conf., 1997, pp. 530-534.
[31]E. C. Lovelace, T. M. Jahns, and J. H. Lang, “Impact of Saturation and Inverter Cost on Interior PM Synchronous Machine Drive Optimization,” IEEE Trans. Ind. Applicat., vol. 36, no. 3, pp. 723-729, May/June 2000.
[32]E. C. Lovelace, T. Keim, J. H. Lang, D. D. Wentzloff, T. M. Jahns, J. Wai, F. Leonardi, and J. M. Miller, “Design and Experimental Verification of a Direct-Drive Interior PM Synchronous Machine Using a Saturable Lumped-Parameter Model,” in Conf. Rec. IEEE-IAS Annual Meeting, 2002, pp. 2486-2492.
[33]E. C. Lovelace, T. M. Jahns, and J. H. Lang, “A Saturating Lumped-Parameter Model for an Interior PM Synchronous Machine ,” IEEE Trans. Ind. Applicat., vol. 38, no. 3, pp. 645-650, May/June 2002.
[34]B. Stumberger, G. Stumberger, D. Dolinar, A. Hamler, and M. Trlep, “Evaluation of Saturation and Cross-Magnetization Effects in Interior Permanent-Magnet Synchronous Motor,” IEEE Trans. Ind. Applicat., vol. 39, no. 5, pp. 1264-1271, Sep./Oct. 2003.
[35]W. L. Soong, D. A. Staton, and T. J. E. Miller, “Design of a New Axially-Laminated Interior Permanent Magnet Motor,” IEEE Trans. Ind. Applicat., vol. 31, no. 2, pp. 358-367, Mar./Apr. 1995.
[36]B. Stumberger, A. Hamler, M. Trlep, and M. Jesenik, “Analysis of Interior Permanent Magnet Synchronous Motor Designed for Flux Weakening Operation,” IEEE Trans. Magnetics, vol. 37, no. 5, pp. 3644-3647, Sep. 2001.
[37]N. Bianchi and S. Bolognani, “Interior PM Synchronous Motor for High Performance Applications,” in Proc. of the Power Conv. Conf., 2002, pp. 148-153.
[38]T. Sebastian, “Temperature Effects on Torque Production and Efficiency of PM Motors Using NdFeB Magnets,” IEEE Trans. Ind. Applicat., vol. 31, no. 2, pp. 353-357, Mar./Apr. 1995.
[39]R. Krishnan and P. Vijayraghavan, “Fast Estimation and Compensation of Rotor Flux Linkage in Permanent Magnet Synchronous Machines,” in Proc. of the IEEE-ISIE Conf., 1999, pp. 661-666.
[40]M. F. Rahman, L. Zhong, W. Y. Hu, K. W. Lim, and M. A. Rahman, “An Investigation of Direct and Indirect Torque Controllers for PM Synchronous Motor Drives,” in Proc. of the IEEE-PEDS Conf., 1997, pp. 519-523.
[41]L. Zhong, M. F. Rahman, W. Y. Hu, and K. W. Lim, “Analysis of Direct Torque Control in Permanent Magnet Synchronous Motor Drives,” IEEE Trans. Power Electron., vol. 12, no. 3, pp. 528-536, May 1997.
[42]M. F. Rahman, L. Zhong, and K. W. Lim, “A Direct Torque-Controlled Interior Permanent Magnet Synchronous Motor Drive Incorporating Field Weakening,” IEEE Trans. Ind. Applicat., vol. 34, no. 6, pp. 1246-1253, Nov./Dec. 1998.
[43]M. F. Rahman and L. Zhong, “Voltage Switching Tables for DTC Controlled Interior Permanent Motor,” in Proc. of the IEEE-IECON, 1999, pp. 1445-1451.
[44]L. Zhong, M. F. Rahman, W. Y. Hu, K. W. Lim, and M. A. Rahman, “A Direct Torque Controller for Permanent Magnet Synchronous Motor Drives,” IEEE Trans. Energy Conv., vol. 14, no. 3, pp. 637-642, Sep. 1999.
[45]M. F. Rahman and L. Zhong, “Comparison of Torque Responses of the Interior Permanent Magnet Motor under PWM Current and Direct Torque Controls,” in Proc. of the IEEE-IECON, 1999, pp. 1464-1470.
[46]M. F. Rahman and L. Zhong, “Problems of Stator Flux Oriented Torque Controllers for the Interior Permanent Magnet Motor,” in Proc. of the IEEE-PEMC Conf., 2000, pp. 342-345.
[47]M. E. Haque and M. F. Rahman, “Influence of Stator Resistance Variation on Direct Torque Controlled Interior Permanent Magnet Synchronous Motor Drive Performance and Its Compensation,” in Conf. Rec. IEEE-IAS Annual Meeting, 2001, pp. 2563-2569.
[48]M. Zordan, P. Vas, M. Rashed, S. Bolobnani, and M. Zigliotto, “Field-Weakening in Vector Controlled and DTC PMSM Drives: A Comparative Analysis,” in Conf. Rec. IEE-PEVSD, 2000, pp. 493-499.
[49]S. R. Macminn and T. M. Jahns, “Control Techniques for Improved High-Speed Performance of Interior PM Synchronous Motor Drives,” IEEE Trans. Ind. Applicat., vol. 27, no. 5, pp. 997-1004, Sep./Oct. 1991.
[50]S. Morimoto, M. Sanada, and Y. Takeda, “Effects and Compensation of Magnetic Saturation in Flux-Weakening Controlled Permanent Synchronous Motor Drives,” IEEE Trans. Ind. Applicat., vol. 30, no. 6, pp. 1632-1637, Nov./Dec. 1994.
[51]J. M. Kim and S. K. Sul, “Speed Control of Interior Permanent Synchronous Motor Drive for the Flux Weakening Operation,” IEEE Trans. Ind. Applicat., vol. 33, no. 1, pp. 43-48, Jan./Feb. 1997.
[52]M. Zordan, P. Vas, M. Rashed, S. Bolobnani, and M. Zigliotto, “Field-Weakening in High-Performance PMSM PMSM Drives: A Comparative Analysis,” in Conf. Rec. IEEE-IACON, 2000, pp. 1718-1724.
[53]C. Mademlis and V. G. Agelidis, “A High-Performance Vector Controlled Interior PM Synchronous Motor Drive with Extended Speed Range Capability,” in Conf. Rec. IEEE-IECON, 2001, pp. 1475-1482.
[54]H. Kim and R. D. Lorenz, “Improved Current Regulators for IPM Machine Drives Using On-Line Parameter Estimation,” in Conf. Rec. IEEE-IACON, 2002, pp. 86-91.
[55]B. H. Bae, N. Patel, S. Schulz, and S. K. Sul, “New Field Weakening Technique for High Saliency Interior Permanent Magnet Motor,” in Conf. Rec. IEEE-IACON, 2003, pp. 898-905.
[56]M. Tomita, T. Senjyu, S. Doki, and S. Okuma, “New Sensorless Control for Brushless DC Motors Using Disturbance Observers and Adaptive Velocity Estimations,” IEEE Trans. Ind. Electron., vol. 45, no. 2, pp. 274-282, Apr. 1998.
[57]T. Aihara, A. Toba, T. Yanase, A. Mashimo, and K. Endo, “Sensorless Torque Control of Salient-Pole Synchronous Motor at Zero-Speed Operation,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 202-208, Jan. 1999.
[58]Z. Chen, M. Tomita, S. Ichikawa, S. Doki, and S. Okuma, “Sensorless Control of Interior Permanent Magnet Synchronous Motor by Estimation of an Extended Electromotive Force,” in Conf. Rec. IEEE-IACON, 2000, pp. 1814-1819.
[59]W. Limei, G. Qingding, and R. D. Lorenz, “Sensorless Control of Permanent Magnet Synchronous Motor,” in Conf. Rec. IEEE-PEMC, 2000, pp. 186-190.
[60]V. Comnac, M. N. Cirstea, F. Moldoveanu, D. N. Ilea, and R. M. Cernat, “Sensorless Speed and Direct Torque Control of Interior Permanent Magnet Synchronous Machine Based on Extended Kalman Filter,” in Proc. of the IEEE-ISIE conf., 2002, pp. 1142-1147.
[61]S. Morimoto, K. Kawamoto, M. Sanada, and Y. Takeda, “Sensorless Control Strategy for Salient-Pole PMSM Based on Extended EMF in Rotating Reference Frame,” IEEE Trans. Ind. Applicat., vol. 38, no. 4, pp. 1054-1061, July/Aug. 2002.
[62]Z. Chen, M. Tomita, S. Doki, and S. Okuma, “An Extended Electromotive Force Model for Sensorless Control of Interior Permanent-Magnet Synchronous Motors,” IEEE Trans. Ind. Electron., vol. 50, no. 2, pp. 288-295, Apr. 2003.
[63]H. Kim, M. C. Harke, and R. D. Lorenz, “Sensorless Control of Interior Permanent-Magnet Machine Drives with Zero-Phase Lag Position Estimation,” IEEE Trans. Ind. Applicat., vol. 39, no. 6, pp. 1726-1733, Nov./Dec. 2003.
[64] P. Vas, Vector Control of AC Machines, New York: Oxford University Press, 1990.
[65] M. N. Uddin, T. S. Radwan, and M. A. Rahman, “Performance of Interior Permanent Magnet Motor Drive Over Wide Speed Range,” IEEE Trans. Energy Conv., vol. 17, no. 1, pp. 79-84, Mar. 2002.
[66] P. Vas, Electrical Machines and Drives-A Space-Vector Theory Approach, New York: Oxford University Press, 1992.
[67]Shinn-Ming Sue and Ching-Tsai Pan, “A Novel Torque Control Strategy for IPMSM Drives,” International Journal of Electrical Engineering, vol. 11, no. 2, pp. 123-130, May 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top