跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/01 20:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:裴靜偉
研究生(外文):Zingway Pei
論文名稱:發光多矽氮化矽薄膜電流傳輸特性研究
論文名稱(外文):STUDY ON THE CURRENT TRANSPORT CHARACTERISTICS OF SI NANODOTS IN A LUMINESCENT SILICON RICH SILICON NITRIDE THIN FILM
指導教授:黃惠良黃惠良引用關係
指導教授(外文):Huey-Liang Hwang
學位類別:博士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:144
中文關鍵詞:發光氮化矽電流傳輸
外文關鍵詞:photoluminescenceSilicon rich nitridecurrent transport
相關次數:
  • 被引用被引用:0
  • 點閱點閱:122
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文中,我們利用電漿輔助化學氣象沈積法成長過矽氫化非晶矽薄膜。成長的氣體為稀釋於氬氣中的Silane與氮氣。成長溫度為300oC。所成長出來的過矽氫化非晶矽薄膜隨著氣體流量的變化,矽含量也跟著變化。在光激發光(photoluminescence,PL)的實驗中,所發出的光隨著矽含量的不同而有著系統化波長的變化。矽含量愈多,波長愈長。而利用此一薄膜製作電激發光(Electroluminescence, EL)元件,在高電壓下,發出伯長範圍在400到750nm的光,在肉眼下,可看到白色的光點。利用X-ray的光誘發電子頻譜(x-ray photoemission spectroscopy, XPS)實驗中薄膜的Si 2p訊號涵蓋了Si-Si4的位置。而經過熱處理的薄膜顯現了明顯的Si-Si4相。在穿隧式電子顯微鏡的影像中則發現了明顯的矽原子團。大小在2至4nm。平均半徑為3nm。面密度為7X1011/cm2。
在電流電壓的分析中,我們利用了n形及p形的矽晶圓當作基板,來成長過矽氫化非晶矽薄膜,同時用鋁及金當作上電極。利用能帶的偏則而可以觀察電子或電洞的傳輸特性。以金做電極而n-Si當基板的元件中發現了電流的跳躍現象。在以鋁做電極,p-Si做基板的元件中發現了負電阻現象。藉由分析能帶圖及可能的電流傳輸機制後,我們發現此一電流電壓特性屬於與矽奈米點相關的電荷傳輸現象。電荷藉由矽量子點的能態做傳輸。在不同矽含量的元件中,我們也發現了這個負電阻區域。矽量子點所造成的負電阻位置起始電壓隨矽含量增加而減低。而矽含量少的元件則沒有任何負電阻現象被發現。藉由序列式量測發現缺陷井輔助傳輸機制參與了矽奈米點相關的傳輸現象。我們利用變化量測頻率的電容電壓關係來分析電荷的動態行為。在量測中,我們發現在穿隧現象發生的電壓點上會有奇異的電容值產生。這些電容值隨著量測的頻率而變。這可以藉由量子電容現象而解釋。傳輸現象是一個有限時間的行為。當傳輸的頻率跟的上電容量測的頻率變化,量子電容則表現出來。反之,若跟不上,則量子電容無反應。此一電容的發生位置與負電阻現象位置相同,再次驗證了負電阻現象是由於矽奈米點相關傳輸機制所造成。藉由此一量測及理論分析,我們可以計算出傳輸現象的時間常數。在矽含量較少的元件中,則沒有發現任何量子電容。倒是有明顯的平帶電壓偏移現象。此一現象為電荷charging薄膜所造成的。藉由量子點能隙所產生的負電阻現象,可以藉由能帶圖來解釋。我們利用所量到的薄膜特性。做不同矽含量元件的能態位置估算。藉由畫出能態相對位置,我們可以解釋負電阻的位置變化及傳輸現象發生與矽含量的關係。
藉由此一研究,我們在高矽含量的元件中發現了負電阻效應。在矽含量相對少的元件中發現了電荷儲存的現象。藉由此一結果,我們認為矽量子點具有潛力應用於非揮發性記憶體及負電阻元件。
In this thesis, we produced Si-rich silicon nitride thin film by plasma enhanced chemical vapor deposition. The flow rate of N2 gas precursor was used as the varying parameter from 2 to 160 sccm while keep the flow rate of SiH4 at 40 sccm.
The silicon based EL device was made by employing PECVD deposited a-SiNx: H thin films as the active layer in the ITO glass / a-SiNx: H (80nm) / Al structure. The EL spectrum was to have a wide distribution from 400 to 750nm and was extensively blue-shifted as compared to the PL spectrum. The electro-luminescence was suggested as being due to gap states’ impact ionized as a result of high electric field and recombination in the luminescent centers in a-SiNx: H thin films.
The existence of the Si-Si4 phase in the annealed silicon nitride was confirmed by the appearance multi-peaks in the Si 2p binding from the XPS spectra. Silicon nanodots were also observed in the α-SiN0.56: H by cross section TEM image. The size of the Si nanodots after the rapid thermal annealing was between 2 and 4nm has a mean diameter of 3 nm with density of 7X1011/cm2.
Current-voltage characteristics were applied to investigate the electrical transport properties. The structure for measurement studies consist an Au/Al metal as the top gate, a layer of silicon nitride films with different compositions on n or p type Si substrate. The structure ensures either electrons or holes as dominated carriers for investigations. NDR effects were observed at low field in the form of a current jump (electron tunneling) or current peak (hole transport). A double barrier band diagram is suggested to explain this current transport. The NDR is attributed to the Si nanodots related transport. With the sequential stress experiment, the traps assist tunneling might incorporated in the Si nanodots related transport.
Current-voltage measurement on the diodes with different Si contents was also performed. The peaks shift with the Si contents at low bias was attributed as the transport through the energy level of Si nanodots. The disappearance of NDR effects at samples contain less Si contents points out a boundary between the resonant tunneling and F-N tunneling.
The frequency-dependent capacitance-voltage (C-V) spectroscopy was applied to investigate on the carrier dynamics in Si nanodots embedded structure. The negative differential resistance (NDR) region in current-voltage (I-V) characteristics was found consistent to the dot related capacitance in multi-frequency capacitance voltage characteristics further implies the Si dot related transport mechanism. An equivalent circuit model was suggested to explain the frequency dependence. The transport time were estimated based on this model.
The energy levels in the Si-rich silicon nitride films using the parameter direct or indirect form the measurement results. The boundary of NDR effect between N30 and N70 conditions can be explained by the band diagrams.
The transport characteristics for thin silicon nitride film contain Si nanodots were investigated. This NDR effect due to the Si nanodots related transport was found in highly Si content sample. Charging carriers in the silicon nitride film was found at less Si contents sample. The results of this work suggest the Si rich silicon nitride is potentially for non-volatile memory and NDR device applications.
[1.1]. K.D. Hirschman, L.Tsybeskov, S.P Duttagupta and P.M Fauchet, NATURE, Vol 384, 338(1996)
[1.2]. R.T Collins, P.M. Fauchet and M.A.Tischler, PHYSICS TODAY, Jan. 24(1997)
[1.3]. H.Z.Song, X.M,Bao, N.S,Li and X.L.Wu, Appl.Phys.Lett. 72(3),356(1998)
[1.4]. J.F.Tong, H.L.Hsiao and H.L.Hwang, Appl.Phys.Lett. 74(16),2316(1999)
[1.5]. G.G.Qin, A.P.Li, B.R.Zhang and B.C. Li, J.Appl.Phys. 78(3),2006(1995)
[1.6]. I.G.Austin, W.A.Jackson, T.M.Searle and P.K.Bhat, PHILOSOPHICAL MAGAZINE B, 52(3), 271(1985)
[1.7]. C. Mo, L.Zhang, C. Xie and T. Wang, J. Appl. Phys. 73(10), 5185(1993)
[1.8]. N.M Park, C.J. Choi, T.Y. Seong, and S.J. Park , Phys. Rev. Letters, 7 (86) p1355 (2001)
[1.9]. H.L.Hsiao, A.B.Yang and H.L. Hwang, Applied Surface Science, 212-213, P73-77 (2003)
[1.10]. H. L. Hsiao, Ph.D Thesis, National Tsing Hua University, 2000
[1.11]. P. Steiner, F. Kozlowski, and W. Lang, Appl. Phys. Lett. 62, 2700 (1993).
[1.12]. Jan Linnros and Nenad Lalic, Appl. Phys. Lett. 66, 3048 (1995).
[1.13]. W. Boonkosum, D. Kruangam and S. Panyakeow, Jpn. J. appl. Phys. 32, 1534 (1993).
[1.14]. A.P. Li, Lidong Zhang, Y. X. Zhang, G. G. Qin, Xin Wang and X. W. Hu, Appl. Phys. Lett. 69(1), 4(1996)
[1.15]. I TRS Roadmap, 2003. http://www.itrs.org
[1.16]. P. Mazumder, S. Kulkarni, M. Bhattacharya, J.P. Sun and G. I. Haddad, Proceedings of IEEE, Vol.86, No. 4, 664 (1998)
[1.17]. Alan, Seabaugh, 1999 SRC Report, 1999
[1.18]. P. Fay et.al., IEEE TED, Vol.48, No.6, 2001
[1.19]. K. Ismail, B.S. Meyerson, and P. J. Wang, “Electron resonant tunneling in Si/SiGe double barrier diodes,” Appl. Phys. Lett., vol. 59, pp.973-975, 1991.
[1.20]. P. See, D.J. Paul, S. Mantl, I. V. Zozoulenko, and K.-F. Berggren, “High performance Si/Si1-xGex resonant tunneling diodes,” IEEE Electron. Dev. Lett., vol. 22, pp.182-184, 2001.
[1.21]. Y. Ishikawa, T. Ishihara, M. Iwasaki, and M. Tabe, “Negative differential conductance due to resonant tunneling through SiO2/single-crys-talline-Si double barrier structure,” Elect. Lett., vol. 37, pp.1200-1201, 2001.
[1.22]. M. Shahjahan, Y. Koji, K. Sawada, and M. Ishida, “Fabrication of resonance tunnel diode by gamma-Al2O3/Si multiple heterostructures,” Jpn. J. Apple. Phys., pt. 1, vol. 41, pp.2602-2605, 2002.
[1.23]. M. Watanabe, T. Funayama, T. Teraji, and N. Sakamaki, “CaF2/CdF2 double-barrier resonant tunneling diode with high room-temperature peak-to-valley ratio,” Jpn. J. Apple. Phys., pt. 2, vol. 39, pp.L716-L719, 2000.
[1.24]. M. Watanabe, Yaketani, and M. Asada, “Epitaxial growth and electrical characteristics of CaF2/Si/CaF2 resonant tunneling diode structures grown on Si(111) 1 degrees-off substrate,” Jpn. J. Apple. Phys., pt. 2, vol. 39, pp.L764-L967, 2000.
[1.25]. V. M. Franks, K. F. Hulme, and J. R. Morgan, “An alloy process for making high current density Si tunnel diode junctions,” Solid-State Electron., vol. 8, pp.343-344, 1965. N. Holonyak, Jr. (private communication).
[1.26]. Germanium Power Devices Corp., ,Andover, MA, 1996.
[1.27]. J. Wang, D. Wheeler, Y. Yan, J. Zhao, S. Howard, and A. Seabaugh, “Si tunnel diodes formed by proximity rapid thermal diffusion,” in IEEE Lester Eastman Conf. High-Performance Devices, Newark, DE, 2002.
[1.28]. H. Jorke, H. Kibbel, K. Strohm, and E. Kasper, “Forward-bias characteristics of Si bipolar junctions grown by molecular-beam epitaxy at low-temperatures,” Appl. Phys. Lett., vol. 63, pp.2408-2410, 1993.
[1.29]. S. L. Rommel, T. E. Dillon, P. R. Berger, R. Lake, P. E. Thompson, K. D. Hobart, A. C. Seabaugh, and D. S. Simons, “Si-Based interband tunneling devices for high-speed logic and low power memory applications,” in Late News int. Elect. Dev. Meet. Tech. Dig.,1998, pp.1035-1037.
[1.30]. S. L. Rommel, T. E. Dillon, P. R. Berger, P. E. Thompson, K. D. Hobart, R. Lake, and A. C. Seabaugh, “Epitaxially grown Si resonant interband tunnel diodes exhibiting high current densities,” IEEE Electron Dev. Lett., vol. 20, pp.329-331, July 1999.
[1.31]. P. E. Thompson, K. D. Hobart, M. Twigg, G. Jernigan, T. E. Dillon, S. L. Rommel, P. R. Berger, D. S. Simons, P. H. Chi, R. Lake, and A. C. Seabaugh, “Si resonant interbant tunnel diodes grown by low temperature molecular beam epitaxy,” Appl. Phys. Lett., vol. 75, pp.1308-1310, 1999
[1.32]. P. E. Thompson, K. D. Hobart, M. E. Twigg, S. L. Rommel, N. Jin, P. R. Berger, R. Lake, A. C. Seabaugh, P. H. Chi, and D. S. Simons, “Epitaxial Si-based tunnel diodes,” Thin Solid Films, vol. 380, pp.145-150, 2000.
[1.33]. R. Duschl, O. G. Schmidt, E. Kasper, and K. Eberl, “High room temperature peak-to-valley current ratio in Si-based Esaki diodes,” Elect. Lett., vol. 35, pp.1111-1112, 1999.
[1.34]. R. Duschl and K. Eberl, “Physics and applications of Si/SiGe/Si resonant interband tunneling diodes,” Thin Solid Films, vol. 380, pp.151-153, 2000.
[1.35]. M.Watanabe et.al. ESSDERC 2003
[1.36]. Y.Suda,H.Koyama, Appl.Phys.Lett., 79(2273),2001
[1.37]. N.Jin et.al. IEEE TED, Vol. 50, p1876-1884,2003
[1.38]. S.Surdigo et.al. ISDRS,2003,p176-177, 2003
[1.39]. J.-E. Wernersson et.al., Electronic Letters, 2004
[1.40]. Q.-Y. Ye, R. Tsu and E. H. Nicollian, Phys. Rev. B, 44,1806 (1991)
[1.41]. E. H. Nicollian and R. Tsu, J. Appl. Phys., 74,4020 (1993)
[1.42]. M. Fukuda, K. Nakagawa, S. Miyazaki, and M. Hirose, Appl. Phys. Lett. 70, 2291(1997)
[1.43]. Q.Wan, T.H. Wang, M.Zhu and C.L.Lin, Appl. Phys.Lett., 81,538 (2002)
[1.44]. R. Compano, Technology Roadmap for Nanoelectronics,2000
[1.45]. V.-Y. Aaron and J.-P. Leburton, IEEE potentials, 21,35(2002)
[2.1]. H.L. Hsiao, Ph.D Thesis, National Tsing Hua University, 1999
[2.2]. Y.R. Chang, MS Thesis, National Tsing Hua University, 1999
[2.3]. A.R. Forouhi, and I. Bloomer, Phys. Rev. B34, 7018(1986), ibid. 38,1865(1988)
[2.4]. A.Iqbal, W.B.Jackson, C.C.Tsai, J.W.Allen and C.W. Bates, Jr., J.Appl.Phys. 61,2947(1987)
[2.5]. C.D.Wagner, L.E.Davis, M.V. Zeller, J.A.Taylor, R.H. Baymond,and H.Gale, Surf. Interface Anal. 3,211(1981)
[2.6]. D.V.Tsu, G. Lucovsky, and M. Mantani, Phys. Rev. B 33, 7069 (1986)
[2.7]. W.S.Liao, C.H.Lin and S.C. Lee, Appl.Phys.Lett. 65, 2229(1994)
[3.1]. C. Mo, L. Zhang, C. Xie and T. Wang, J. Appl. Phys., 73 (10), 5185 (1993)
[3.2]. J. Robertson and M. J. Powell, Appl. Phys. Lett., 44,415 (1984)
[3.3]. A. Zunger and L.W. Wang, Appl. Surf. Sci. 102, 350(1996)
[3.4]. T.Takagahara, K. Takeda, phys. Rev B46, 15578(1992)
[3.5]. H. L. Hsiao, Ph.D Thesis, National Tsing Hua University, 2000
[3.6]. H.L.Hsiao, A.B.Yang and H.L. Hwang, Applied Surface Science, 212-213, P73-77 (2003)
[3.7]. L. T. Canham. Appl. Phys. Lett. 57, 1046(1990)
[3.8]. H. Z. Song, X. M. Bao, N. S. Li and J. Y. Zhang, J. Appl. Phys. 82(8), 4028(1997).
[3.9]. J. F. Tong, H. L. Hsiao and H. L. Hwang, Appl. Phys. Lett. 74(16), 2316(1999)
[3.10]. P. Steiner, F. Kozlowski, and W. Lang, Appl. Phys. Lett. 62, 2700 (1993).
[3.11]. Jan Linnros and Nenad Lalic, Appl. Phys. Lett. 66, 3048 (1995).
[3.12]. K. D. Hirschman, L. Tsybeskov, S. P Duttagupta and P. M Fauchet, NATURE, Vol 384, 338(1996)
[3.13]. P. Knapek, B. Rezek, D. Muller, J. J. Grob, R. Levy, K. Luterova, J. Kocka and I. Pelant, Phys. Stat. Sol. (a) 167, R5 (1998).
[3.14]. Zingway Pei, Y. R. Chung, H. L. Hsiao and H. L. Hwang, ECS proceedings ''ADVANCED LUMINESCENT MATERIALS AND QUANTUM CONFINEMENT'', 99-22,474-(1999)
[3.15]. W. Boonkosum, D. Kruangam and S. Panyakeow, Jpn. J. appl. Phys. 32, 1534 (1993).
[3.16]. A.P. Li, Lidong Zhang, Y. X. Zhang, G. G. Qin, Xin Wang and X. W. Hu, Appl. Phys. Lett. 69(1), 4(1996)
[4.1] K.D. Hirschman, L.Tsybeskov, S.P Duttagupta and P.M Fauchet, NATURE, Vol. 384, 338(1996)
[4.2] R.T Collins, P.M Fauchet and M.A.Tischler, PHYSICS TODAY, Jan. 24(1997)
[4.3] H.Z.Song, X.M,Bao, N.S,Li and X.L.Wu, Appl.Phys.Lett. 72(3),356(1998)
[4.4] J.F.Tong, H.L.Hsiao and H.L.Hwang, Appl.Phys.Lett. 74 (16), 2316(1999)
[4.5] G.G.Qin, A.P.Li, B.R.Zhang and B.C. Li, J.Appl.Phys. 78(3),2006(1995)
[4.6] Zingway Pei, Y.R.Chang and H.L Hwang, ADVANCED LUMINCESCENT MATERIALS AND QUANTUM CONFINEMENT, p.474, THE ELECTROCHEMICAL SOCIETY , Pennington (1999).
[4.7] N.M Park, C.J. Choi, T.Y. Seong, and S.J. Park , Phys. Rev. Letters, 7 (86) p1355 (2001)
[4.8] Zingway. Pei, Y.R. Chang and H.L.Hwang, Appl. Phys.Lett 80 (2839), 2002.
[4.9] C. Mo, L.Zhang, C. Xie and T. Wang, J. Appl.Phys. 73(10), 5185(1993)
[4.10] H.R. Phillip, J. Non-Cryst. Solids 8/10, 627 (1972)
[4.11] R.J. Temkin, J. Non-Cryst. Solids 17, 215 (1975)
[4.12] G.M. Ingo, N. Zacchetti, D. della Sala, C. Coluzza, J. Vac. Sci.Technol. A 7 (5) 3048(1989)
[4.13] A. Simunek, G. Wiech, J. Non-Cryst. Solids 192 &193, 161(1995)
[4.14] S. Takeoka, M. Fujii, S. Hayashi and K. Yamamoto, Phys. Rev. B 58 (7921), 1998
[4.15] C.S. Yang, C.J. Lin, P.Y. Kuei, S.F. Horng, C. C. H. Hsu, M.C. Liaw, Applied Surface Science 113/114, 116(1997)
[5.1]. Light Emission in Silicon: From Physics to Devices, edited by D. J. Lockwood (Academic, San Diego,1998)
[5.2]. Z. Pei, Y. R. Chang and H. L. Hwang, Appl. Phys. Lett., 80,2839 (2002)
[5.3]. J. F. Tong, H. L. Hsiao and H. L. Hwang, Appl. Phys. Lett. 74(16), 2316(1999)
[5.4]. P. Mazumder, S. Kulkarni, M. Bhattacharya, J.P. Sun and G. I. Haddad, Proceedings of IEEE, Vol.86, No. 4, 664 (1998)
[5.5]. V.-Y. Aaron and J.-P. Leburton, IEEE potentials, 21,35(2002)
[5.6]. Q.-Y. Ye, R. Tsu and E. H. Nicollian, Phys. Rev. B, 44,1806 (1991)
[5.7]. E. H. Nicollian and R. Tsu, J. Appl. Phys., 74,4020 (1993)
[5.8]. M. Fukuda, K. Nakagawa, S. Miyazaki, and M. Hirose, Appl. Phys. Lett. 70, 2291(1997)
[5.9]. Q.Wan, T.H. Wang, M.Zhu and C.L.Lin, Appl. Phys.Lett., 81,538 (2002)
[5.10]. D.N. Kouvatsos, V. Ioannou-Sougleridis and A.G. Nassiopoulou, Appl. Phys. Lett., 82, 397 (2003)
[5.11]. V. Ioannou-Sougleridis and A.G. Nassiopoulou, J. Appl. Phys., 94, 4084(2003)
[5.12]. S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E.F. Crabbe, and K. Chan, Appl. Phys. Lett. 68, 1377 (1996)
[5.13]. S.M. Sze, Physics of Semiconductor Devices, 1981
[5.14]. B. L. Yang, H. Wong and Y. C. Cheng, Solid-State. Electron. 37, 481 (1994)
[5.15]. M. Lenzlinger, and E. H. Snow, J. Appl. Phys. 40, 278 (1969).
[5.16]. M. Depas, B. Vermeirs, P. W. Mertens, R. L. Van Meirhaeghe and M. M. Heyns, Solid-State. Electron. 28, 1465 (1995)
[5.17]. Y.C. Yeo, Q. Lu, W. C. Lee, T.J. King. C. Hu, X. Wang, x. Guo and T. P. Ma, IEEE Electron Device Lett., 21,540 (2000)
[5.18]. N.G. Tarr, D.L. Pulfrey and D. S. Camporese, IEEE Trans. Electron Devices,30, 1760(1983)
[5.19]. J. Frenkel, Phys. Rev. 54 ,647(1939)
[5.20]. J. P. Chang and Y.-S. Lin, Appl. Phys. Lett. 79, 3666 (2001)
[5.21]. A. L. J. Levy, Applied Quantum Mechanics, 2003
[5.22]. J.P.A. Van Der Wagt, Proceedings of IEEE, 87(571)1999
[5.23]. Semiconductor Physics and Devices, 3/e, Donald A. Neamen, (McGraw Hill, 2003)
[5.24]. L. L. Chang, L. Easki, and R. Tsu, Appl. Phys. Lett., 24,593(1974)
[5.25]. G.H. Parker and C. A. Mead, Appl. Phys. Lett., 14,21(1969)
[5.26]. E. Suzuki, D. K. Schroder and Y. Hayashi, J. Appl. Phys., 60,3616(1986)
[6.1] S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E.F. Crabbe, and K. Chan, Appl. Phys. Lett. 68, 1377 (1996)
[6.2] Z. Pei, Y. R. Chang and H. L. Hwang, Appl. Phys. Lett., 80,2839 (2002)
[6.3] E. H. Nicollian and R. Tsu, J. Appl. Phys., 74,4020 (1993)
[6.4] Z. Pei and H.L. Hwang, Material Science in Semiconductor Processing, to be published (2004)
[6.5] Y. Kim, K. H. Park, T. H. Chung, H. J. Bark, J.-Y. Yi, W. C. Choi, E. K. Kim, J. W. Lee and J. Y .Lee, Appl. Phys. Lett., 78,934 (2001)
[6.6] D. N. Louvatsos, V. Ioannou-Sougleridis, and A.G. Nassiopoulou, Appl. Phys. Lett., 82,397 (2003)
[6.7] C. Miesner, T. Asperger, K. Brunner, and G. Abstreiter, Appl. Phys. Lett., 77, 2704 (2000)
[6.8] J. Genoe, C. V. Hoof, W.V. Roy,J. H. Smet, K. Fobelets, R. P. Mertens, and G. Borghs, IEEE Trans. Electron Devices, on, 38,2006 (1991)
[6.9] R.J. Luyken, A. Lorke,A.O. Govorov, and J.P. Kotthaus, G. Medeiros-Ribeiro, and P.M. Petroff, Appl. Phys. Lett., 74, 2486 (1999)
[6.10] Z. Pei and H. L. Hwang, Applied Surface Science, 212-213, 760 (2003)
[6.11] Z. Pei and H.L. Hwang, Appl. Phys. Lett., in revised
[6.12] K. J. Yang and C. Hu, IEEE Trans. Electron Devices, 46,1500(1999)
[6.13] Semiconductor Physics and Devices, 3/e, Donald A. Neamen, (McGraw Hill, 2003)
[6.14] M. Büttiker, IBM J. Res. Develop., 32,63(1988)
[6.15] H.L. Hsiao, A.B.Yang and H. L. Hwang, Applied Surface Science, 212-213, 73-77 (2003)
[7.1] H.L.Hsiao, Ph. D Thesis, National Tsing Hua University, 1999
[7.2] J. G. Simmons, J. appl. Phys., 35,2655(1964)
[7.3] S.Zafar, C.Cabral, J.R. Amos, and A. Callegari, Appl. Phys. Lett., 80,4859 (2002)
[7.4] Semiconductor Physics and Devices, 3/e, Donald A. Neamen, (McGraw Hill, 2003)
[7.5] Y. C. Yeo, Q. Lu, W.C. Lee, T.J. King and C. Hu, Digest of 58th Device Research Conference, pp.65 – 66 (2000)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top