跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/06 00:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:范富誠
研究生(外文):Fan Fu-Chen
論文名稱:分佈回饋式光參數放大波導
論文名稱(外文):Distributed Feedback Periodic Poled Lithium Niobate waveguide: Modeling, Fabrication, and Optical performance
指導教授:黃衍介黃衍介引用關係
指導教授(外文):Huang Yen-Chieh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:54
中文關鍵詞:分佈回饋式週期反轉鋰酸鋰晶體退火式質子交換波導鋰酸鋰
外文關鍵詞:DFBPPLNAPE waveguidelithium niobate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
回饋式光參數放大器波導擁有相當多的優點,例如經由波導的方式,大幅提升波長轉換的效率;利用分佈式回饋來得到單一頻率的輸出;準相位匹配的使用則可以產生任意波長的雷射;光學元件的使用量大幅減少也增加了系統的穩定度和可靠性;不再需要依靠精細的人工微調光路也是一大特點;波導的使用也方便和積體光學的被動元件做進一步的結合。相較於一般的波長轉換系統約需50cm x 50cm 的地方放置,本設計搭配一般半導體雷射則只約佔10cm x 10 cm的大小。 (若不包括半導體雷射的電源)
在本論文裡,我們首先推導了基本的回饋式光參數放大波導的理論。相較於一般波長轉換的裝置多需要千瓦的功率(脈衝式),經由一些合理的參數假設 我們計算出本放大器輸入的最低功率為100毫瓦。波導的高轉換效率和分布回饋式的設計大幅地降低了本放大器對於最低輸入功率的要求。第三章探討此類高效率波長轉換的波導製作,第四章則比較各式各樣的分佈回饋式的格柵製作,這裡格柵的週期約為1.03微米。實際在鋰酸鋰晶體製作格柵非常困難,即便使用乾蝕刻的方式也無法製作出良好品質的短週期格柵,在此我們在進行乾蝕刻之前先進行短時間的質子交換,利用此製程,增加晶體內的應力,使得蝕刻的速度大幅增加。對於一個週期為2微米的格柵,我們能製作的最大深度為 0.6微米。雖然質子交換會降低波長轉換的效率和增加波導的耗損,經由程式的模擬 在如此的質子交換參數之下,約還能保持95%以上的波長轉換效率。經由量測穿透光對應於不同的入射波長,我們成功的量測到約9%穿透光的降低,峰值波長為1529.18奈米,半高全寬為 0.0189奈米,據推算出的回饋參數為每公分0.1,由此回饋式格柵的幾何形狀所計算而得的回饋參數為每公分0.6。低於理論值的主要原因為,波導的端面必須有非常良好的抗反射光學膜,否則此格柵回饋的力度會大幅降低。此外受限於黃光設備的關係,整體的回饋式格柵的製作並不夠完美。相信只要能克服這兩點,對於一個擁有超低功率輸入需求、單一波長輸出、 任意波長轉換的元件來說,必將成為非常重要的積體光學元件之一。
The Distributed Feedback Parametric Oscillator built in APE PPLN waveguide is characterized as a high efficient, arbitrary single frequency generation, and compact device. Theory of DFB OPO waveguide is derived and the calculated threshold is around 0.1W for . We assume the length of the DFB grating is the same with the PPLN, which is 4cm long. The parametric process involves 800nm pumping laser and the signal wavelength is 1530nm (also be the Bragg wavelength). The threshold is 40 times lower if we compare DFB OPO for bulk and waveguide. The major achievement of this dissertation is the development of the distributed feedback grating on the annealed proton exchange waveguide. Modeling and optimizing of the DFB grating is given. Around 9% transmission drop at 1529.18nm with FWHM 0.0189nm is measured. The fitted DFB coupling strength is 0.1/cm while the theoretical value is 0.6 /cm. The imperfect lithography grating and the end facets reflection lower the effective feedback strength. The Quasi Phase Matching technique is used for frequency conversion process. In the near future, a good quality DFB grating would be fabricated with high reflectivity and narrow bandwidth; DFB OPO waveguide could be demonstrated and explored.
Table of Contents

CHAPTER 1: INTRODUCTION
1.1 Motivation………………………………………………………1
1.2 Principle of Guided-Wave Quasi Phase Matching……….2
1.3 Overview of This Dissertation……..…………………….4

CHAPTER 2: THEORY OF DISTRIBUTED FEEDBACK PARAMETRIC OSCILLATOR IN APE PPLN WAVEGUIDE
2.1 Introduction………………………………………………………..8
2.2 Theory of DFB OPO APE PPLN waveguide................9
2.3 Summary...…………………………………..........…….12

CHAPTER 3: FABRICATION OF PERIODIC POLED LITHIUM NIOBATE ANNEALED PROTON EXCHANGED WAVEGUIDE
3.1 Introduction……………………………………………………13
3.2 Periodic Poled Lithium Niobate….……………………….13
3.3 Annealed Proton Exchanged waveguide…...............19
3.4 Summary.............................................25

CHAPTER 4: DISTRIBUTED FEEDBACK ANNEALED PROTON EXCHANGED WAVEGUIDE
4.1 Introduction……………………………………………………29
4.2 Theory of Distributed Feedback grating…………………30
4.3 Simulation and calculation…………………………………32
4.4 Fabrication of Distributed Feedback structure on APE Waveguide………...……………………......................36
4.5 Optical Measurement………………………………………………………….41
4.6 Summary………………………………………………………….45

CHAPTER 5: CONCLUSION AND FUTURE WORK
5.1 Summary of the thesis contributions…………………...51
5.2 Future Work……………………………………………………………………51
[1] Missuo Fukuda, “Optical semiconductor devices”, Wiley Series in microwave and optical engineering, John Wiley & Sons, INC.
[2] Wei Shi and Yujie J. Ding, “Designs of terahertz waveguides for efficient parametric terahertz generation”, Applied Physics Letters, 82, 4435-4437, 2003.
[3] Y. S. Lee, T. Meade, and T. B. Norris, “Tunable narrow-band terahertz generation from periodically poled lithium niobate”, Applied Physic Letters, 78, 3583-3585,2001.
[4] Kodo Kawase, et al, “Unidirectional radiation of widely tunable THz wave using a prism coupler under noncollinear phase matching condition”, Appl. Phys. Lett., 71, 753-755, 1997.
[5] D J Birkin, et al, “3.6mW blue light by direct frequency doubling of a diode laser using an aperiodically poled lithium niobate crystal”. Appl. Phys. Lett., 78, 3172-3173, 2001.
[6] M H Chou, et al, “1.5 um band wavelength conversion based on difference frequency generation in LiNbO3 waveguides with integrated coupling structures”, Opt. lett., 23, 1004-1006, 1998.
[7] M H Chou, et al, “1.5-um-band wavelength conversion based on cascaded second-order nonlinear susceptibility in LiNbO3 waveguides”, Photonics Tech. Lett., 11, 653-655, 1999.
[8] Y W Lee, F C Fan, and Y C Huang, “Nonlinear multiwavelength conversion based on an aperiodic optical superlattice in lithium niobate”, Optics Letters, 27, 2191-2193, 2002.
[9] Xiaofan Cao, et al, “Simultaneous blue and green second harmonic generation in quasiphase matched LiNbO3 waveguide”, Appl. Phys. Lett., 60, 3280-3282, 1992.
[10]G Z Luo, et al, “Simultaneously efficient blue and red light generations in a periodically poled LiTaO3”, Appl. Phys. Lett., 78, 3006-3008, 2001.
[11]P E Powers, Thomas J Kulp, and S E Bisson, “Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by using of a fan-out grating design”, Optics Letters, 23, 159-161, 1998.
[12]Michael L Bortz, “Quasi-Phasematched Optical Frequency Conversion in Lithium Niobate Waveguides”, Ph.D. dissertation, Department of Electrical Engineering, Stanford University, Stanford, CA, 1994.
[13]Ming-Hsien Chou, “Optical frequency mixers using three-wave mixing for optical fiber communications”, Ph.D. dissertation, Department of Electrical Engineering, Stanford University, Stanford, CA, 1999.
[14]W. Sohler, “Report 1997-99, Applied Physics / Integrated Optics”, Universitat Paderborn.
[15]Yen-Chieh Huang and Yuan-Yao Lin, “Coupled-wave theory for distributed-feedback optical parametric amplifiers and oscillators”, J. Opt. Soc. Am. B, 21, 777-790, 2004.
[16]A. C. Chiang, et al, “Distributed-Feedback optical parametric oscillation by use of a photorefractive grating in periodically poled lithium niobate,” Opt. Lett., 27, 1815-1817, 2002.
[17]M. M. Fejer, R. L. Byer, W. R. Bosenberg,” Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3”, Journal of the Optical Society of America B, 12, 2012, 1995.
[18]M M Fejer, et al, “Quasi-phase-matched second harmonic generation: tuning and tolerances”, IEEE J. Quantum Electron., 28, 2631-2654, 1992.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top