跳到主要內容

臺灣博碩士論文加值系統

(18.207.132.116) 您好!臺灣時間:2021/07/29 21:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王志翔
研究生(外文):Chih-Hsiang Wang
論文名稱:串聯式電壓驟降補償器之湧浪電流抑制方法
論文名稱(外文):Inrush Current Suppression Scheme of Series Voltage Sag Compensator
指導教授:鄭博泰
指導教授(外文):Po-Tai Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:115
中文關鍵詞:電壓驟降電力品質湧浪電流
外文關鍵詞:Voltage SagPower QualityInrush Current
相關次數:
  • 被引用被引用:0
  • 點閱點閱:449
  • 評分評分:
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:0
對於近來電力電子技術的發展與數位控制的進步,工業應用上所採用之電機設備,對於電力系統所發生之電力品質問題相當敏感。對於接地故障造成之電壓驟降問題,造成敏感性負載因欠壓而導致生產程序中斷。因此工業應用上,可利用串聯式電壓驟降補償器解決敏感性負載相關電力品質問題。對於串聯式電壓驟降補償器所採用之耦合變壓器,本文提出一種新的方法以抑制串聯變壓器之湧浪電流。當補償電壓投入時,串聯變壓器因飽和現象造成暫態湧浪電流發生,湧浪電流為穩態時之變壓器激磁電流十倍以上,不僅對變壓器造成損害,同時造成補償電壓無法傳送至市電側,使補償性能降低。本文將利用湧浪抑制控制法將補償電壓命令之等效磁通量加以抑制,使等效磁通量不會超過變壓器飽和點,以消除湧浪電流。以湧浪抑制控制法雖可消除串聯變壓器之湧浪電流,同時亦會降低補償器起始之暫態輸出電壓,然而若可有效抑制湧浪電流,得以額定容量較小之串聯變壓器,達到串聯式電壓驟降補償器之設計要求,同時可減少補償器之重量,降低成本。

本文將以電腦模擬及實際電路實驗結果,驗證所提之串聯式電壓驟降補償器系統架構,論文內容為緒論、文獻回顧、控制原理、模擬結果與分析、實驗結果與分析以及結論等六個章節,詳細說明串聯式電壓驟降補償器之控制原理與整體系統性能。
Due to the progress of power electronics technologies in recent years, industrial manufacturing equipments are very sensitive to the power quality events of the utility grid. Voltage sags often cause undervoltage fault in sensitive loads, and interrupt the production process. The series-connected voltage sag compensator has been adopted by industries to maintain the power quality received by sensitive loads. The series coupling transformer of the voltage sag compensator often draws significant inrush current when the compensation voltage is injected. The saturation of the transformer during inrush reduces the output voltage and causes degradation of the compensation voltage, and the inrush current may also trigger the over-current protection of the compensator. In this thesis, an inrush suppression method is proposed. The proposed method can prevent magnetic saturation by limiting the flux-linkage during the starting transient of the compensator. The proposed method can reduce the capacity requirement of the serial coupling transformer, and increase the power density of the compensator system.

The proposed inrush suppression method is presented and analyzed in this thesis. Computer simulation and laboratory experimental results are presented to verify the performance of the proposed system.
誌謝 ........................................................................................... I
中文摘要 ........................................................................................... II
英文摘要 ........................................................................................... III
目錄 ........................................................................................... IV
圖目錄 ........................................................................................... VII
表目錄 ........................................................................................... XIII

一、 緒論
1.1、 簡介 …...……………………………………………... 1
1.2、 研究方向 ……………………………………………... 2
1.3 論文架構 ...…………………………………………... 3

二、 文獻回顧
2.1、 簡介 …...……………………………………………... 4
2.2、 電壓驟降相關規範 …………....……………………... 5
2.3、 變壓器湧浪電流 ………...…………………………... 7
2.4、 結論 …...……………………………………………... 14

三、 控制原理
3.1、 簡介 …...……………………………………………... 15
3.2、 電壓驟降補償控制 …………..……………………... 16
3.2.1、 補償電壓量運算控制 ………………………. 18
3.2.2、 濾波器設計考量 ……………………………. 20
3.2.3、 驟降判斷控制 ……………………………. 23
3.3、 旁路開關截止動作 …..……………………………... 25
3.4、 湧浪電流抑制控制 …………………………………... 27
3.5、 結論 …….…..………………………………………... 37

四、 模擬結果與分析
4.1、 簡介 ..…….…………………………………………... 38
4.2、 線性負載測試 …...…………………………………… 40
4.2.1 單相接地故障 ……………………………….. 40
4.2.2 三相接地故障 ……………………………….. 43
4.3、 閘流體旁路開關截止 …......………………………… 47
4.4、 湧浪電流抑制 …...…………………………………… 51
4.4.1、 單相變壓器湧浪電流測試 ………………….. 51
4.4.2、 電壓驟降補償器湧浪電流測試 …………….. 54
4.5、 結論 ………………………………………………….. 58

五、 實驗結果與分析
5.1、 簡介 ..…….…………………………………………... 59
5.2、 線性負載測試 …...…………………………………… 62
5.2.1 單相接地故障 ……………………………….. 62
5.2.2 三相接地故障 ……………………………….. 66
5.3、 馬達驅動器負載測試 ..........………………………… 70
5.3.1 單相接地故障 ……………………………….. 70
5.3.2 三相接地故障 ……………………………….. 74
5.4、 電容器組暫態投入效應 ….....……………………… 78
5.5 閘流體旁路開關截止測試 …………………………… 80
5.6、 湧浪電流抑制 …...………….……………………… 84
5.6.1 開回路測試 ….……………………………….. 85
5.6.2 電壓驟降補償器湧浪電流抑制測試 …………. 90
5.7、 結論 ………………………………………………….. 97
六、 結論 …………………………………………………………. 102
參考文獻 ........................................................................................... 104
附錄 ........................................................................................... 107
[1] Po-Tai Cheng, Chian-Chung Huang, Chun-Chiang Pan, and Subhashish Bhattacharya, “Design and Implementation of a Series Voltage Sag Compensator Under Practical Utility Conditions”, IEEE Transactions on Industry Applications, vol.39, No.3, May/June 2003, pp.884-853.

[2] J. W. Schwartzenberg, “Application of AC switch power electronic building blocks in medium voltage static transfer switches” IEEE Power Engineering Society General Meeting, vol.3 , July 2003, pp.1372 – 1374.

[3] E. Alegria, A. Khan, J. Rajda, and S. Dewan, “Static Voltage Regulator (SVR) – ride through support for semiconductor facilities”, Proceeding of the 1998 Power Quality Conference, Santa Clara, CA, November 1998.

[4] W. E. Brumsickle, R. S. Schneider, G. A. Luckjiff, D. M. Divan, M. F. McGranaghan, “ Dynamic sag correctors: cost-effective industrial power line conditioning”, IEEE Transactions on Industry Applications, vol.37 , Jan.-Feb. 2001, pp.212-217.

[5] D. M. Vilathgamuwa, A. A. D. R. Perera, S. S. Choi, “Voltage sag compensation with energy optimized dynamic voltage restorer”, IEEE Transactions on Power Delivery, vol.18, July 2003, pp.928-936.

[6] Chi-Jen Huang, Shyh-Jier Huang, Fu-Sheng Pai, “Design of dynamic voltage restorer with disturbance-filtering enhancement”, IEEE Transactions on Power Electronics, vol.18, Sept. 2003, pp.1202-1210

[7] P. K. Lim, D.S. Dorr, “Understanding and resolving voltage sag related problems for sensitive industrial customers”, IEEE Power Engineering Society Winter Meeting, vol.4, 2000, pp.2886-2890.

[8] IEEE Std. 1159-1995, “IEEE recommended practice for monitoring electric power quality”, Nov. 1995.


[9] IEEE Std. 1346-1998 “IEEE recommended practice for evaluation electric power system compatibility with electronic process equipment”, July 1998.

[10] M. F. Alves, T. N. Ribeiro, “Voltage sag: an overview of IEC and IEEE standards and application criteria” IEEE 1999 Transmission and Distribution Conference, vol.2 , April 1999, pp.585-589.

[11] “Semi F47-0200 Specification for semiconductor processing equipment voltage sag immunity”, Semiconductor Equipment and Materials Council, Washington, DC, 2000.

[12] ITI(CBEMA) Curve Application Note, Information Technology Industry Council, 2000.

[13] Francisco de León, Brian Gladstone, Menno van der Veen, “Transformer Based Solutions to Power Quality Problems”, Powersystems World 2001.

[14] P. C. Y. Ling, A. Basak, “Investigation of magnetizing inrush current in a single-phase transformer”, IEEE Transactions on Magnetics, vol.24, Nov, 1988, pp.3217-3222.

[15] V. Molcrette, J.L. Konty, J.P. Swan, “Reduction of Inrush Current in Single-Phase Transformer Using Virtual Air Gap Technique”, IEEE Transactions on Magnetics, vol. 34, July 1998, pp.1192-1194.

[16] M. S. J. Asghar, “Elimination of Inrush Current of Transformers and Distribution Lines”, Proceedings of the 1996 International Conference on Power Electronics, Drives and Energy Systems for Industrial Growth, vol.2, 1996, pp.976-980.

[17] Chris Fitzer, Atputharajah Arulampalam, Mike Barnes, and Rainer Zurowski, “Mitigation of Saturation in Dynamic Voltage Restorer
Connection Transformers”, IEEE Transactions on Power Electronics, vol.17, November 2002, pp.1058-1066.


[18] Joseph Nevelsteen and Humberto Aragon, “Starting of Large Motors – Methods and Economics”, IEEE Transactions on Industry Applications, vol.25 Nov./Dec. 1989, pp.1012-1018.

[19] Gürkan Zenginobuz, Isik Cadirci, Muammer Ermis and Cüneyt Barlak, “Performance Optimization of Induction Motors During Voltage-Controlled Soft Starting”, IEEE Transactions on Energy Conversion, vol.19, June 2004, pp.278-288.

[20] Texas Instruments Incorporated, “TMS320C6000 CPU and Instruction Set Reference Guide”, in Texas Instruments Incorporated, October, 2000.

[21] Texas Instruments Incorporated, “Code Composer Studio Tutorial”, in Texas Instruments Incorporated, March, 2000.

[22] Texas Instruments Incorporated, “TMS320C6x C Source Debugger”, in Texas Instruments Incorporated, March, 2000.

[23] Texas Instruments Incorporated, “TMS320C6x Peripheral Support Library Programmer’s Reference”, in Texas Instruments Incorporated, March, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top