跳到主要內容

臺灣博碩士論文加值系統

(3.229.137.68) 您好!臺灣時間:2021/07/25 17:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾建衡
研究生(外文):Chien-Heng Tseng
論文名稱:週期線性系統之控制觀測與平衡
論文名稱(外文):Reachability/Observability and Balanced Realization of Periodic Descriptor System
指導教授:林文偉林文偉引用關係
指導教授(外文):Wen-Wei Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:25
中文關鍵詞:ReachabilityObservabilityBalance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:111
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
In this paper, we define the reachability and observability of periodic descriptor system, and deduce some equivalent properties from the definitions of reachability and observability. This is a generation of the period one descriptor system which can also be used in further study of periodic Lyapunov equations. Furthermore we define the Hankel singular values of the system, and try to find the balanced realization.
[1] D. J. Bender, Lyapunov-like equations and reachability/observability gramians for descriptor systems, IEEE Trans. Auto. Control, 32 (1987).
[2] M. C. Berg, N. Amit, and J. D. Powell, Multirate digital control system design, IEEE Trans. Auto. Control, 33 (1988).
[3] S. Bittanti, Deterministic and stochastic linear periodic systemsin Time series and linear systems, Springer Verlag, New York,
[4] S. Bittanti, P. Colaneri, and G. D. Nicolao, The di®erence periodic Riccati equation for the periodic prediction problem, IEEE Trans. Auto. Control,
33 (1988).
[5] A. Bojanczyk, G. H. Golub, and P. Van Dooren, San Diego, Proc. SPIE Conference, vol. 1770, 1992.
[6] E. K.-W. Chu, H.-Y. Fan, and W.-W. Lin, Reachability/observability gramians and balanced realization of periodic descriptor systems, submitted, 2004, NCTS, National Tsing Hua University, Hsinchu 300, Taiwan, 2004.
[7] L. Dai, Singualr Control Systems, 1989.
[8] D. S. Flamm and A. J. Laub, A new shift-invariant representation of perioidc linear systems, Systems and Control Lett., 17 (1991).
[9] B. Francis and T. T. Georgiou, Stability theory for linear time-invariant plants with periodic digital controllers, IEEE Trans. Auto. Control, 33 (1988).
[10] K. Glover, All optimal hankel-norm approximations of linear multivariable systems and their L1-errors bounds, Int. J. Control, 39 (1984).
[11] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., 1996.
[12] J. J. Hench and A. J. Laub, Numerical solution of the discrete-time periodic Riccati equation, IEEE Trans. Auto. Control, 39 (1994).
[13] M. Kono, Eigenvalue assignment in linear discrete-time system, Int. J. Control, 32 (1980).
[14] Y.-C. Kuo, W.-W. Lin, and S.-F. Xu, Regularrization of linear discrete-time perioidc descriptor systems by derivative and proportional state feedback, to
appear in SIAM J. Matrix Analy. Appl., (2004).
[15] F. L. Lewis, Fundamental, reachability, and observability matrices for discrete descriptor systems, IEEE Trans. Auto. Control, 30 (1985).
[16] W.-W. Lin and J.-G. Sun, Perturbation analysis for eigenproblem of periodic matrix pairs, Lin. Alg. Appl., 337 (2001).
[17] W.-W. Lin and J.-G. Sun, Perturbation analysis of the periodic discrete-time algebraic Riccati equation, SIAM J. Matrix Analy. Appl., 24 (2002).
[18] W.-W. Lin, P. Van Dooren, and Q.-F. Xu, booktitle inWorkshop on Periodic Systems and Control, Como, Italy, 2001.
[19] M.-L. Liou and Y.-L. Kuo, Exact analysis of switched capacitor circuits with arbitrary inputs, IEEE Trans. Circuits and Systems, 26 (1979).
[20] B. C. Moore, Principal component analysis in linear systems: controllability, observability, and model reduction, IEEE Trans. Auto. Control, 26 (1981).
[21] J. A. Richards, Analysis of periodically time-varying systems, 1983.
[22] J. Sreedhar and P. Van Dooren, booktitleEuropean Control Conf., 1997.
[23] J. Sreedhar and P. Van Dooren, Periodic descriptor systems: Solvability and conditionability, IEEE Trans. Auto. Control, 44 (1999).
[24] T. Stykel, Analysis and numerical solution of generalized Lyapunov equations, PhD Dissertation, Institut fÄur Mathematik, Tecnische UniversitÄat Berlin,
Berlin, 2002.
[25] T. Stykel, Stability and inertia theorems for generalized Lyapunov equations, Lin. Alg. Appl., 355 (2002).
[26] T. Stykel, Input-output invariants for descriptor systems, preprint PIMS-03-1, Paci‾c Institute for the Mathematical Sciences, Canada, 2003.
[27] P. Van Dooren and J. Sreedhar, When is a periodic discrete-time system equivalent to a time invariant one?, Lin. Alg. Appl., 212/213 (1994).
[28] A. Varga, Periodic Lyapunov equations: some applications and new algorithms, Internat. J. Control, 67 (1997).
[29] A. Varga, Balancing related methods for minimal realization of perioidc systems, System and Control Lett., 36 (1999).
[30] A. Varga, Proc. of IEEE Conference on Decision and Control, Sydney, Australia, 2000.
[31] A. Varga, Robust and minimum norm pole assignment with periodic state feedback, IEEE Trans. Auto. Control, 45 (2000).
[32] A. Varga and P. Van Dooren, inWorkshop on Periodic Systems and Control, Como, Italy, 2001.
[33] J. Vlach, K. Singhai, and M. Vlach, Computer oriented formulation of equations and analysis of switched-capacitor networks, IEEE Trans. Circuits and Systems, 31 (1984).
[34] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top