跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/04 18:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊國銘
研究生(外文):Kuo-Ming Yang
論文名稱:Nd:YAG雷射對於真皮穿透深度之探討
論文名稱(外文):The penetration depth of Nd:YAG laser on dermis
指導教授:李寬容李寬容引用關係
指導教授(外文):Kuan-Rong Lee
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:58
中文關鍵詞:Nd:YAK 雷射雷射皮膚真皮趨膚深度
外文關鍵詞:Nd:YAG laserlaserskindermisskin depth
相關次數:
  • 被引用被引用:2
  • 點閱點閱:111
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
雷射已經被廣泛應用在皮膚科及整形外科上,多用於治療皮膚上的缺陷如刺青、黑痣以及皺紋等。然而,目前對於雷射與皮膚破壞深度的知識並不是相當的清楚。我們認為雷射所造成的破壞深度 (apparent penetration) 與電磁波理論上的趨膚深度(skin depth)有關聯。
本實驗以1064 nm和532 nm波長的銣釔鋁石榴石(Nd:YAG)雷射 去照射豬前臂腋下的真皮組織,以病理切片及電子顯微鏡去測量其被破壞的深度,再進一步去分析其深度與雷射波長之間的關係。本實驗亦以黏土模擬皮膚被 Nd:YAG雷射破壞的體積並比較在相同能量下兩種波長所造成破壞體積的差異。
利用外插法計算真皮的相對介電常數(relative dielectric constant) �捯及導電係數(conductivity) �耤A在1064 nm波長下,�捯 和 ���n的值各為 0.73和246.31 S/m;而在532 nm下則分別為0.57和331.01 S/m。再利用所求得的 Q 值 (1064 nm為43.07,532 nm為59.48) 去計算出真皮的趨膚深度。
實驗結果顯示:(1)雷射所造成的皮膚破壞深度與雷射的波長成正比。(2)當照射能量為300 ~ 1000 mJ時,對於1064 nm波長的破壞深度約為7.5 ~ 25 �慆;而當能量為300 ~ 500 mJ時,532nm所造成的破壞深度則為5 ~ 9 �慆;在同樣能量下,長波長所造成的破壞深度要比短波長深大約35-45%。(3)趨膚深度在1064nm及532 nm波長下分別為17 �慆和12 �慆。在500mJ的能量下,對於此兩種波長破壞深度與趨膚深度比率分別為0.73 及0.72。(4)兩種波長在相同能量下所造成的破壞體積,大約是相等的。
由此實驗顯示出,Nd:YAG雷射所造成皮膚表面的破壞深度與雷射波長所穿透的趨膚深度有關連性;而波長與破壞體積並無相關性。
Laser is widely applied to treat many disorders of skin such as tattoo, naevia, and rhytides in dermatology and orthopaedics. However, the knowledge about theoretical formulation for laser and apparent penetration �唌� of skin rupture is still very limited. We suggest that apparent penetration �唌� is correlated with skin depth ���|
In this study, the armpit of swine dermis was irradiated by Nd:YAG laser at 1064 and 532 nm. The apparent penetration �唌� of dermis was measured by paraffin section and SEM. The measured apparent penetration �唌� was used to analyze the relationship between the �唌� and the wavelengths. Clay was used to estimate the volume of skin rupture and the volume at 1064 nm was compared with that at 532 nm at the same power.
The �捯 and �� of dermis were calculated by extrapolation to be 0.73 and 246.31 S/m at 1064 nm and 0.57 and 331.01 S/m at 532 nm, respectively. The Q value was used (43.07 at 1064 nm and 59.48 at 532 nm) to calculate the skin depth ���nof both wavelength in dermis.
The results showed that (1) the apparent penetration �唌� was dependent on the wavelength of laser, (2) the �唌� at 1064 nm was about 7.5 ~ 25 �慆 from 300 to 1000 mJ, the �唌� at 532 nm was 5 ~ 9 �慆 from 300 to 500 mJ, and �唌� at 1064 nm was 40 ~ 41% deeper than that at 532 nm, (3) the skin depth �� at 1064 and 532 nm was calculated to be 17 and 12 �慆, respectively, (4) the ruptured volume of dermis at both wavelengths was identical under the same total power was delivered.
These results suggest that apparent penetration �唌� correlates with skin depth ��. The wavelength is independent on ruptured volume of dermis.
1. N. Taylor. “Laser: the inventor, the nobel laureate, and the thirty-year patent war.” Simon and Schuster, Inc. Publisher (2000).
2. A. L. Schawlow and C. H. Townes. Infrared and Optical Masers. Physical Review 1958; 112: 1940-1949.
3. T. H. Maiman. Stimulated optical emission in fluorescent Solids. I. theoretical considerations. Physical Review 1961; 123: 1145-1150.
4. T. H. Maiman. Stimulated optical emission in fluorescent Solids. Ⅱ. Spectroscopy and stimulated emission in ruby. Physical Review 1961; 123: 1151-1157.
5. D. C. O’shea, W. Russell Callen, and W. T. Rhades. “An Introduction to Laser and Their Application.” Ch. 6, P. 126-179, Addison-Wesley, Inc. Publisher (1977).
6. H. P. Berlien and G. J. Muller. “Applied laser medicine.” Ch. 1-2.4, P. 23-71, Springer-Verlag, Inc. Publisher (2003).
7. A. Katzir. “Lasers and optical fibers in medicine.” Ch. 2, p. 15-58, Academic Press, Inc. Publisher (1993).
8. GD. Litwin and AG. Kirpitchev. Laser in surgical hepatology. Journal of Clinical Laser Medicine & Surgery 1991; 9(3) : 201-204.
9. M. Csanady, L. Rovo, and J. Jori. Combined use of endoscopic CO2 laser excision of a marginal laryngeal turmor, radical neck dissection, and perioperative laterofixation of the opposite vocal cord. European Archives of Oto-Rhino-Laryngology 2000; 257: 276-278.
10. PM. V. Renedo, F. M. Gil, LM. J. Gutierrez, JC D. V. Rodriguez, and AJ. M. Sanchez. Treatment of oral and oropharyngeal epidermoid carcinomas by means of CO2 laser. Medical Oral 2004; 9: 168-175.
11. RR. Anderson and JA. Parrish. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science 1983; 220: 524-7.
12. E. F. Bernstein. Treatment of resistant port-wine stain with the 1.5-msec pulse duration, tunable, pulsed dye laser. Dermatologic Surgery 2000; 26: 1007-1009.
13. W. J. Loo and S. W. Lanigan. Recent advances in laser therapy for the treatment of cutaneous vascular disorders Lasers in Medical science 2002; 17: 9-12.
14. K. Batta, H Goodyear, C Moss, HC. Williams, and R. Waters. Randomized controlled study of early pulse dye laser (PDL) treatment of uncomplicated childhood heamangiomas. British Journal of Dermatology 2001; 145 (suppl. 59): 29-30.
15. A. C. Kubler, T. Haase, C. Staff, B. Kahle, M. Rheinwald, and J. Muhling. Photodynamic therapy of primary nonmelanomatous skin tumours of the head and neck. Lasers in Surgery and Medicine 1999; 25: 60-68.
16. F. C. Antony and C. C. Harland. Red ink tattoo reactions: successful treatment with the Q-switched 532 nm Nd:YAG laser. British Journal of Dermatology 2003; 149: 94-98.
17. A. Jones, P. roddey, I. orgengo, and T. rosen. The Q-switched Nd:YAG laser effectively treats tattoos in darkly pigmented skin. Dermatologic Surgery 1996; 22: 999-1001.
18. M. K. Beade, V. J. Levine, and R. Ashinoff. Laser removal of tattoos. American Journal of Clinic Dermatology 2001; 2: 21-25.
19. W. Westerhof and M. Gamei. Treatment of acquired junctional melanocytic naevi by Q-switched and normal mode ruby laser. British Journal of Dermatology 2003; 148: 80-85.
20. S. E. Chang, K. J. Kim, J. H. Choi, K. J. Sung, k. C. Moon, and J. K. Koh. Areolar cosmetic tattoo link darkening: a complication of Q-switched alexandrite laser treatment. Dermatologic Surgery 2002; 28: 95-96.
21. G. Shah and T. S. Alster. Treatment of an amalgam tattoo with a Q-switched alexandrite (755 nm) laser. Dermatologic Surgery 2002; 28: 1180-1181.
22. A. V. F. A. J. Mueller, M. Grueterich, and M. W. Ulbig. Transpupillary thermotherapy (TTT) in circumscribed choroidal hemangioma. Graefe's Archive for Clinical and Experimental Ophthalmology: Albrecht von Graefes Archiv fur Klinische und Experimentelle Opthalmologie 2002; 240: 7-11
23. R. J. Bensadoun, J. C. Franquin, G.Ciais, V. Darcourt, M. M. Schubert, M. Viot, J. Dejou, C. Tardieu, K. Benezery, T.D. Nguyen, Y. Laudoyer, O. Dassonville, G. Poissonnet, J Vallicioni, A. Thyss, M. Hamid, P. Chauvel, and F. Demard. Low-engeryHe/Ne laser in the prevention of radiation-induced mucositis. Support Care Cancer 1999; 7: 244-252.
24. B. Ebert, M. Kohi, U. Sukowski, H. Rinneberg, H. Winter, K. P. Bellmann, and H. Audring. Fluoresence imaging of cutaneous malignant melanomas and naevi. Laser in Medical Science 1998; 13: 204-208.
25. G. Litscher and D. Schikora. Cerebral vascular effects of non-invasive laserneedles measured by transorbitial and transtemporal Doppler sonography. Laser in Medical Science 2002; 17: 289-295.
26. R. Eisberg and R. Resnick. “Quantum Physics of Atoms, Moleculess, Solids, Nuclei, and Particles.” 2nd ed., Ch. 11, p392-397, John Wiley & Sona, Inc. Publisher (1985).
27. E. Hecht. “Optics.” 3rd ed., Ch. 13, p583-585, Addison Wesley Inc. Publisher (1988).
28. P. N. Prasad. “Introduction to Biophotonics.” 1st ed., Ch. 4-6, p92-175, Addison Wesley, Inc. Publisher (2003).
29. M. H. Niemz. “Laser-Tissue Interactions, Fundamentals and Applications.” 1st ed., Ch. 2, p9-25, Springer, Inc. Publisher (1996).
30. E. N. Marieb and J. Mallatt. “Human anatomy.” 3rd ed., Ch. 5, p112-116, Benjamin Cummings, an imprint of Addison Wesley Longman, Inc. Publisher (2001).
31. T. S. Leeson, C. R. Leeson, and A. A. Paparo. “Text/Atlas of histology.” Ch. 10, p363-378, W.B. saunders company, Harcourt Brace Jovanovich, Inc. Publisher (1988).
32. F. H. Netter. “Atlas of human anatomy.” 2nd ed., p511, Novartis, Inc. Publisher (1997).
33. R. K. WAngsness. “Electromagnetic Fields.” 2nd ed., Ch. 24, p375-388, Wiley, Inc. Publisher (1986).
34. J. M. Osepchuk and R. C. Petersen. Safety standards for exposure to RF electromagnetic fields. Microwave magazine, IEEE 2001; 4(4): 57-69.
35. J. P. Grant, R. N. Clarke, G. T. Symm, and N. M. Spyrou. In vivo dielectric properties of human skin from 50 MHz to 2.0 GHz. Physical Medicine of Biology 1988; 33: 607-612.
36. C. Gabriel, S. Gabriel, and E. Corthout. The dielectric properties of biological tissues: I. literature survey. Physical Medicine of Biology 1996; 41: 2231-2249.
37. V. Raicu, N. Kitagawa, and A. Irimajiri. A quantitative approach to the dielectric properties of the skin. Physical Medicine of Biology 2000; 45: L1-L4.
38. H. Kplarova, D. Ditrichova, and J. Wagner. Penetration of laser light linto the skin in vitro. Lasers in Surgery and Medicine 1999; 24: 231-235.
39. K. Susumu Spectroscopic measurement of blood volume and its oxygenation in a small volume of tissue using red laser lights and differential calculation between two point detections. Optics & Laser Technology 2003; 35: 485-489.
40. K. Meier, V. Hombach, R. kastle, R. Y. S. Tay, and N. Kuster. The dependence of electromagnetic energy absorption upon human-head modeling at 1800 MHz. IEEE Transactions on Microwave Theory and Techniques 1997; 45: 2058-2062.
41. R. M. Lavker, G. Dong, P. S. Zheng, and G. F. Murphy. Hairless micropig skin. American Journal of Pathology 1991; 138: 687-697.
42. Q. Fang and X. H. Hu. Modeling of skin tissue ablation by nanosecond pulses from ultraviolet to near-infrared and comparison with experimental results. IEEE Journal of Quantum Electronics 2004; 40(1): 69-77.
43. L. G. Humason. “Animal Tissue Techniques.” 3rd ed., ch 1-5, p3-68, Mei Ya Publications Inc. publisher (1977).
44. E. F. Bernstein, S. Kornbluth, D. B. Brown, and J. Black. Treatment of spider veins using a 10 millisecond pulse-duration frequency-doubled neodymium YAG laser. Dermatologic surgery 1999; 25: 316-320.
45. G. M. Menaker, D. A. Wrone, R. M. Williams, and R. L. Moy. Treatment of facial rhytids with a nonablative laser: a clinical and histologic study. Dermatologic surgery 1999; 25: 440-444.
46. D. J. Goldberg, and Silapunt. Histologic evaluation of Q-switched Nd:YAG laser in the nonablative treatment of wrinkles. Dermatologic surgery 2001; 27: 744-746.
47. R. R. Anderson and J. A. Parrish. The optics of human skin. The Journal of Investigative Dermatology 1981; 77(1): 13-19.
48. S. H. Liew, A. O. Grobbelaar, C. T. Gault, R. Sanders, C. J. Green, and C. Linge. The effect of ruby laser light on ex vivo hair follicles: Clinical implications. Annals of Plastic Surgery 1999; 42(3): 249-254.
49. S. Stolik, J. A. Delgado, A. Perez, L. Anasagasti. Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissue. Journal of Photochemisty and Photobiology B: Biology 2000; 57: 90-93.
50. A. Toppong, D. Gault, A. Grobbelaar, R. Sander, C. Green, and C. Linge. Does low penetration of human skin by the normal mode ruby laser account for poor permanent depilatory success rates? Lasers in Medical science 2001; 16: 224-229.
51. D. H. Sliney. Laser-tissue interactions. Clinics in Chest Medicine 1985; 6(2): 203-208.
52. B. E. A. Saleh and M. C. Teich, “Fundamentals of Photonics” 2nd ed., Ch. 19, p769-770, Wiley & Sons, Inc. Publisher (1991).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top