跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/14 12:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭琇穗
研究生(外文):Hsiu-Hsuei Cheng
論文名稱:探討人類小熱休克蛋白質HspB3與Actin交互作用的區域
論文名稱(外文):Identification Of Interacting Domain Between Small Heat Shock Protein HspB3 and Actin
指導教授:張晃猷
指導教授(外文):Hwan-You Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:73
中文關鍵詞:熱休克蛋白小熱休克蛋白酵母菌雙雜交系統
外文關鍵詞:heat shock proteinsmall heat shock proteinyeast two hybrid system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本實驗室先前選殖出屬於小熱休克蛋白家族中的一員HspB3,並利用融合瘤技術製得H469E2G單株抗體。藉由免疫轉漬法測得HspB3主要表現在大白鼠的骨骼肌與心臟,其中以心臟的表現量較高。隨後利用酵母菌雙雜交系統的方法,對人類心臟cDNA基因庫進行篩選,確定HspB3能夠與actin相結合作用。本實驗的目的即在於尋找HspB3與actin交互作用的區域,經由胺基酸點突變與一系列胺基酸序列刪除分析,發現在HspB3主要是利用第25到36個胺基酸的部位與actin作用,在actin主要是利用第322到337個胺基酸的部位與HspB3作用。我們隨後利用共軛焦顯微鏡偵測細胞內HspB3與actin結合情形,在RD細胞中分別轉染野生型HspB3與突變型HspB3 (HspB3/△25~36aa) 36~48小時後,發現野生型HspB3能與actin細胞骨架完整的結合在一起,而突變型HspB3與actin細胞骨架結合的程度受到影響。另外在細胞型態上的觀察,當大量表現野生型與突變型的HspB3在RD細胞中,突變型HspB3的表現確實影響到RD細胞膜的完整性。所以,藉由本論文所得到之資訊,我們除了能夠提供HspB3與actin結合的訊息外,利用共軛焦顯微鏡偵測肌肉細胞中兩個蛋白質作用,推斷其具有獨特的生理功能。
Our laboratory has previously identified a cDNA clone encoding the small heat shock protein HspB3. A hybridoma that produces a monoclonal antibody specific to HspB3 was also generated. By using Western blot analysis, HspB3 could be detected in rat skeletal muscle and most abundantly in the heart. Further screening human heart cDNA library using HspB3 as a bait with the yeast two-hybrid system . We have identified that HspB3 is capable of interacting with actin. The goal of this project is to identify the domains required for the interaction between these two proteins. Through serial deletion of these two genes followed by yeast two hybrid analysis, we have identified the region between amino acid position 25-36 of HspB3 is critical for interacting with actin. In actin, amino acid region 322-337, which is near the C-terminus is necessary for its interaction with HspB3. To confirm the interaction between HspB3 and actin in vivo, confocal microcopy was used. When a wild type HspB3 and a truncated mutant of HspB3 (HspB3/△25~36aa) were over-expressed in RD (Human embryonal rhabdomyosarcoma) cell line, the wild type of HspB3 could be co-localized with actin, but the truncated HspB3 could not . Moreover, unlike the wild type HspB3 that did not affect cell morphology, overexpression of truncated HspB3 in RD cells resulted in loss of cell membrane integrity. We concluded that HspB3 is a true actin binding protein. Our results have provided basic information concerning the function role of the small heat shock protein HspB3.
目 錄 頁次
中文摘要-------------------------------------------Ⅰ
英文摘要-------------------------------------------Ⅱ
縮寫表---------------------------------------------Ⅲ
目錄-----------------------------------------------Ⅴ
一、前言-------------------------------------------1
二、材料與方法-------------------------------------10
三、實驗結果---------------------------------------29
四、討論-------------------------------------------39
五、參考文獻---------------------------------------46
圖表-----------------------------------------------53
附錄-----------------------------------------------71
五、參考文獻
Alonso, S., A. Minty, Y. Bourlet, and M. Buckingham. 1986. Comparison of three actin-coding sequences in the mouse; evolutionary relationships between the actin genes of warm-blooded vertebrates. J Mol Evol. 23:11-22.

An, S.S., B. Fabry, M. Mellema, P. Bursac, W.T. Gerthoffer, U.S. Kayyali, M. Gaestel, S.A. Shore, and J.J. Fredberg. 2004. Role of heat shock protein 27 in cytoskeletal remodeling of the airway smooth muscle cell. J Appl Physiol. 96:1701-13.

Andley, U.P., S. Mathur, T.A. Griest, and J.M. Petrash. 1996. Cloning, expression, and chaperone-like activity of human alphaA-crystallin. J Biol Chem. 271:31973-80.

Arrigo, A.P. 1990. Tumor necrosis factor induces the rapid phosphorylation of the mammalian heat shock protein hsp28. Mol Cell Biol. 10:1276-80.

Arrigo, A.P. 1998. Small stress proteins: chaperones that act as regulators of intracellular redox state and programmed cell death. Biol Chem. 379:19-26.

Beall, A.C., K. Kato, J.R. Goldenring, H. Rasmussen, and C.M. Brophy. 1997. Cyclic nucleotide-dependent vasorelaxation is associated with the phosphorylation of a small heat shock-related protein. J Biol Chem. 272:11283-7.

Bennardini, F., A. Wrzosek, and M. Chiesi. 1992. Alpha B-crystallin in cardiac tissue. Association with actin and desmin filaments. Circ Res. 71:288-94.

Benndorf, R., X. Sun, R.R. Gilmont, K.J. Biederman, M.P. Molloy, C.W. Goodmurphy, H. Cheng, P.C. Andrews, and M.J. Welsh. 2001. HSP22, a new member of the small heat shock protein superfamily, interacts with mimic of phosphorylated HSP27 ((3D)HSP27). J Biol Chem. 276:26753-61.

Boelens, W.C., and W.W. de Jong. 1995. alpha-Crystallins, versatile stress-proteins. Mol Biol Rep. 21:75-80.

Boelens, W.C., M.A. Van Boekel, and W.W. De Jong. 1998. HspB3, the most deviating of the six known human small heat shock proteins. Biochim Biophys Acta. 1388:513-6.

Cao, L.G., G.G. Babcock, P.A. Rubenstein, and Y.L. Wang. 1992. Effects of profilin and profilactin on actin structure and function in living cells. J Cell Biol. 117:1023-9.

Caspers, G.J., J.A. Leunissen, and W.W. de Jong. 1995. The expanding small heat-shock protein family, and structure predictions of the conserved "alpha-crystallin domain". In J Mol Evol. Vol. 40. 238-48.

Ciechanover, A. 2001. Ubiquitin-mediated degradation of cellular proteins: why destruction is essential for construction, and how it got from the test tube to the patient's bed. In Isr Med Assoc J. Vol. 3. 319-27.

Ehrnsperger, M., C. Hergersberg, U. Wienhues, A. Nichtl, and J. Buchner. 1998. Stabilization of proteins and peptides in diagnostic immunological assays by the molecular chaperone Hsp25. In Anal Biochem. Vol. 259. 218-25.

Fontaine, J.M., J.S. Rest, M.J. Welsh, and R. Benndorf. 2003. The sperm outer dense fiber protein is the 10th member of the superfamily of mammalian small stress proteins. Cell Stress Chaperones. 8:62-9.

Gaubin, Y., F. Vaissade, F. Croute, B. Beau, J. Soleilhavoup, and J. Murat. 2000. Implication of free radicals and glutathione in the mechanism of cadmium-induced expression of stress proteins in the A549 human lung cell-line. Biochim Biophys Acta. 1495:4-13.

Glover, J.R., and S. Lindquist. 1998. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell. 94:73-82.

Horwitz, J. 1992. Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci U S A. 89:10449-53.

Iwaki, A., T. Nagano, M. Nakagawa, T. Iwaki, and Y. Fukumaki. 1997. Identification and characterization of the gene encoding a new member of the alpha-crystallin/small hsp family, closely linked to the alphaB-crystallin gene in a head-to-head manner. Genomics. 45:386-94.

Jagoe, R.T., and A.L. Goldberg. 2001. What do we really know about the ubiquitin-proteasome pathway in muscle atrophy? Curr Opin Clin Nutr Metab Care. 4:183-90.

Jakob, U., M. Gaestel, K. Engel, and J. Buchner. 1993. Small heat shock proteins are molecular chaperones. J Biol Chem. 268:1517-20.

Jia, Y., R.F. Ransom, M. Shibanuma, C. Liu, M.J. Welsh, and W.E. Smoyer. 2001. Identification and characterization of hic-5/ARA55 as an hsp27 binding protein. J Biol Chem. 276:39911-8.

Jolly, C., and R.I. Morimoto. 2000. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst. 92:1564-72.

Kabsch, W., and J. Vandekerckhove. 1992. Structure and function of actin. Annu Rev Biophys Biomol Struct. 21:49-76.

Kappe, G., E. Franck, P. Verschuure, W.C. Boelens, J.A. Leunissen, and W.W. de Jong. 2003. The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10. Cell Stress Chaperones. 8:53-61.
Kappe, G., P. Verschuure, R.L. Philipsen, A.A. Staalduinen, P. Van de Boogaart, W.C. Boelens, and W.W. De Jong. 2001. Characterization of two novel human small heat shock proteins: protein kinase-related HspB8 and testis-specific HspB9. In Biochim Biophys Acta. Vol. 1520. 1-6.

Kato, H., Y. Liu, K. Kogure, and K. Kato. 1994a. Induction of 27-kDa heat shock protein following cerebral ischemia in a rat model of ischemic tolerance. In Brain Res. Vol. 634. 235-44.

Kato, K., K. Hasegawa, S. Goto, and Y. Inaguma. 1994b. Dissociation as a result of phosphorylation of an aggregated form of the small stress protein, hsp27. J Biol Chem. 269:11274-8.

Klemenz, R., A.C. Andres, E. Frohli, R. Schafer, and A. Aoyama. 1993. Expression of the murine small heat shock proteins hsp 25 and alpha B crystallin in the absence of stress. J Cell Biol. 120:639-45.

Kozawa, O., H. Matsuno, M. Niwa, D. Hatakeyama, Y. Oiso, K. Kato, and T. Uematsu. 2002. HSP20, low-molecular-weight heat shock-related protein, acts extracellularly as a regulator of platelet functions: a novel defense mechanism. Life Sci. 72:113-24.

Krief, S., J.F. Faivre, P. Robert, B. Le Douarin, N. Brument-Larignon, I. Lefrere, M.M. Bouzyk, K.M. Anderson, L.D. Greller, F.L. Tobin, M. Souchet, and A. Bril. 1999. Identification and characterization of cvHsp. A novel human small stress protein selectively expressed in cardiovascular and insulin-sensitive tissues. J Biol Chem. 274:36592-600.

Lam, W.Y., S.K. Wing Tsui, P.T. Law, S.C. Luk, K.P. Fung, C.Y. Lee, and M.M. Waye. 1996. Isolation and characterization of a human heart cDNA encoding a new member of the small heat shock protein family--HSPL27. Biochim Biophys Acta. 1314:120-4.

Lindquist, S., and E.A. Craig. 1988. The heat-shock proteins. Annu Rev Genet. 22:631-77.

Mathur, S.K., L. Sistonen, I.R. Brown, S.P. Murphy, K.D. Sarge, and R.I. Morimoto. 1994. Deficient induction of human hsp70 heat shock gene transcription in Y79 retinoblastoma cells despite activation of heat shock factor 1. Proc Natl Acad Sci U S A. 91:8695-9.

Mehlen, P., and A.P. Arrigo. 1994. The serum-induced phosphorylation of mammalian hsp27 correlates with changes in its intracellular localization and levels of oligomerization. Eur J Biochem. 221:327-34.

Mehlen, P., K. Schulze-Osthoff, and A.P. Arrigo. 1996. Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1- and staurosporine-induced cell death. In J Biol Chem. Vol. 271. 16510-4.

Merck, K.B., P.J. Groenen, C.E. Voorter, W.A. de Haard-Hoekman, J. Horwitz, H. Bloemendal, and W.W. de Jong. 1993. Structural and functional similarities of bovine alpha-crystallin and mouse small heat-shock protein. A family of chaperones. J Biol Chem. 268:1046-52.

Morimoto, R.I. 1998. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 12:3788-96.

Neufer, P.D., and I.J. Benjamin. 1996. Differential expression of B-crystallin and Hsp27 in skeletal muscle during continuous contractile activity. Relationship to myogenic regulatory factors. J Biol Chem. 271:24089-95.

Oguro, A., T. Sakurai, M. Otawa, M. Okuno, and Y. Atomi. 2003. The content of heat shock protein 47 (HSP47), a collagen-specific stress protein, changes with gravitational conditions in skeletal muscle. Biol Sci Space. 17:206-7.

Panasenko, O.O., M.V. Kim, S.B. Marston, and N.B. Gusev. 2003. Interaction of the small heat shock protein with molecular mass 25 kDa (hsp25) with actin. Eur J Biochem. 270:892-901.

Ritossa, F.M. 1964. Experimental Activation of Specific Loci in Polytene Chromosomes of Drosophila. Exp Cell Res. 35:601-7.

Rocnik, E., L.H. Chow, and J.G. Pickering. 2000. Heat shock protein 47 is expressed in fibrous regions of human atheroma and Is regulated by growth factors and oxidized low-density lipoprotein. In Circulation. Vol. 101. 1229-33.

Rondeaux, P., S. Horman, P. Galand, and N. Mairesse. 1997. Effects of antisense hsp27 gene expression in osteosarcoma cells. In Vitro Cell Dev Biol Anim. 33:655-8.

Sistonen, L., K.D. Sarge, B. Phillips, K. Abravaya, and R.I. Morimoto. 1992. Activation of heat shock factor 2 during hemin-induced differentiation of human erythroleukemia cells. Mol Cell Biol. 12:4104-11.

Spector, A., R. Chiesa, J. Sredy, and W. Garner. 1985. cAMP-dependent phosphorylation of bovine lens alpha-crystallin. Proc Natl Acad Sci U S A. 82:4712-6.

Stossel, T.P., C. Chaponnier, R.M. Ezzell, J.H. Hartwig, P.A. Janmey, D.J. Kwiatkowski, S.E. Lind, D.B. Smith, F.S. Southwick, H.L. Yin, and et al. 1985. Nonmuscle actin-binding proteins. Annu Rev Cell Biol. 1:353-402.

Sugiyama, Y., A. Suzuki, M. Kishikawa, R. Akutsu, T. Hirose, M.M. Waye, S.K. Tsui, S. Yoshida, and S. Ohno. 2000b. Muscle develops a specific form of small heat shock protein complex composed of MKBP/HSPB2 and HSPB3 during myogenic differentiation. J Biol Chem. 275:1095-104.

Sun, X., J.M. Fontaine, J.S. Rest, E.A. Shelden, M.J. Welsh, and R. Benndorf. 2004. Interaction of human HSP22 (HSPB8) with other small heat shock proteins. J Biol Chem. 279:2394-402.

Suzuki, A., Y. Sugiyama, Y. Hayashi, N. Nyu-i, M. Yoshida, I. Nonaka, S. Ishiura, K. Arahata, and S. Ohno. 1998. MKBP, a novel member of the small heat shock protein family, binds and activates the myotonic dystrophy protein kinase. J Cell Biol. 140:1113-24.

Taylor, A., H.P. Erba, G.E. Muscat, and L. Kedes. 1988. Nucleotide sequence and expression of the human skeletal alpha-actin gene: evolution of functional regulatory domains. Genomics. 3:323-36.

Tessier, D.J., P. Komalavilas, A. Panitch, L. Joshi, and C.M. Brophy. 2003. The small heat shock protein (HSP) 20 is dynamically associated with the actin cross-linking protein actinin. J Surg Res. 111:152-7.

Turoverov, K.K., A.G. Biktashev, S.Y. Khaitlina, and I.M. Kuznetsova. 1999. The structure and dynamics of partially folded actin. Biochemistry. 38:6261-9.

van Montfort, R.L., E. Basha, K.L. Friedrich, C. Slingsby, and E. Vierling. 2001. Crystal structure and assembly of a eukaryotic small heat shock protein. In Nat Struct Biol. Vol. 8. 1025-30.

Verschuure, P., Y. Croes, I.P.R. van den, R.A. Quinlan, W.W. de Jong, and W.C. Boelens. 2002. Translocation of small heat shock proteins to the actin cytoskeleton upon proteasomal inhibition. J Mol Cell Cardiol. 34:117-28.

Wang, Y., A. Xu, and G.J. Cooper. 1999. Phosphorylation of P20 is associated with the actions of insulin in rat skeletal and smooth muscle. Biochem J. 344 Pt 3:971-6.

Wu, C. 1995. Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol. 11:441-69.

Yahara, I. 1996. Stress-inducible cellular responses. Introduction. Exs. 77:XI-XII.

Zagorianakou, N., E. Ioachim, A. Mitselou, E. Kitsou, P. Zagorianakou, G. Makrydimas, M. Salmas, and N.J. Agnantis. 2003. Immunohistochemical expression of heat shock protein 27, in normal hyperplastic and neoplastic endometrium: correlation with estrogen and progesterone receptor status, p53, pRb and proliferation associated indices (PCNA, MIB1). In Eur J Gynaecol Oncol. Vol. 24. 299-304.

羅明德,私立長庚大學碩士論文,類小熱休克蛋白質cDNA的定序及其在細胞中的表現,中華民國八十七年。

吳欣蓉,國立清華大學碩士論文,SHSPL及RLP-1單株抗體之製備與應用,中華民國八十八年。

蔡靜宜,國立清華大學碩士論文,人類小熱休克蛋白質HSPB3之特性與功能分析,中華民國八十九年。

張家瑗,國立清華大學碩士論文,人類小熱休克蛋白質HSPB3與Actin交互作用的探討,中華民國八十九年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊