跳到主要內容

臺灣博碩士論文加值系統

(3.236.68.118) 您好!臺灣時間:2021/07/31 21:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許任玓
研究生(外文):Ren-Dih Sheu
論文名稱:加馬射線天空散射特性參數研究
論文名稱(外文):Characteristic Study of Gamma-Ray Skyshine
指導教授:江祥輝江祥輝引用關係
指導教授(外文):Shiang-Huei Jiang
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:72
中文關鍵詞:天空散射首次碰撞核仁
外文關鍵詞:SkyshineFirst Collision Kernel
相關次數:
  • 被引用被引用:2
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
由於目前國內針對放射性設施之年劑量管制限值較一般監測儀器的偵測低限來得低,為使得設施屏蔽建物設計時能夠確實保證不會超過管制限值,唯有倚賴準確可靠的設計分析工具。然而經由天空散射途徑貢獻的這一部份劑量值的估計,一般屏蔽分析最常用的射線分析(ray analysis)與增建因數(buildup factor)方法並不適用,必須使用特殊的分析技巧。由於這些分析技巧都包含了若干程度的假設,如何引用合理的近似條件,便成為正確進行天空散射的劑量評估的一重要研究課題。
本研究主要的目的在進行加馬射線天空散射特性參數的研究,研究中將參數歸納成三個部分。第一個部分為射源特性,包括射源能量分佈、射源角度分佈及射源位置;第二個部分為介質特性,包括空氣性質、地面散射效應及屏蔽建物,第三個部分為偵測點特性,包括偵測點能量分佈、偵測點角度分佈、以及偵測點位置等。這些特性參數本身及彼此之間的交互作用對天空散射的影響十分複雜,在本文中主要針對影響劑量評估與劑量監測兩個部分進行討論。在天空散射的劑量評估部分,由於射源能量與角度分佈對劑量的影響顯著,因此當考慮體射源的問題時,須將體射源轉化為具有能量與角度分佈的等效點射源後再配合修改既有的天空散射劑量分析程式(SKYDOSE與McSKY)進行評估,方可獲得合理的結果。
此外,我們透過首次核仁積分法,建立一套適合於發展成為例行評估程式的加馬射線天空散射劑量分析方法,其中參考空氣密度之加馬射線首次碰撞核仁係以EGS4蒙地卡羅程式計算得之。這些核仁經由密度修正,則可適用於其他任意空氣密度的情況。利用首次碰撞核仁積分法計算美國國家標準實驗室的天空散射劑量評估範例問題,並與其他數種常用之評估程式進行比較,結果顯示與其他程式計算值吻合良好。相較於使用蒙地卡羅程式,此法計算所需時間甚少。另外亦利用首次碰撞核仁積分法,針對非均向射源以及數種位於不同屏蔽結構內的射源進行加馬射線天空散射劑量之評估,證實我們所提出根據首次碰撞核仁積分從事天空散射劑量評估的方法具有簡單且不失準確的特性,可適用於例行天空散射分析計算。
The annual dose limit of 5 mrem for the site boundary of the radiation facilities is much lower than the annual external radiation dose of about 60 mrem of natural background. The natural background radiation dose changes to a certain extent from site to site and with the meteorological condition, the surrounding environment, and time. It results in the dose contributed by the facility itself is much difficult to be identified by the monitoring system. Therefore, the accurate and reliable analysis tools for the radiation shielding design is required to make sure the dose beyond the limit. For the skyshine problems, however, the basic technique of ray analysis and the application of buildup factors are invalid, and more specialized techniques have to be employed. Most of these specialized techniques are based on some approximations, it becomes more important to determine the reasonable assumptions when these techniques are encountered.
The main research emphasis is to perform the characteristic study of the gamma-ray skyshine. The characteristic parameters of the gamma-ray skyshine were divided into three categories: the first is the characteristic of source, including the energy distribution, the angular distribution and position; the second is the characteristic of medium, including the air properties, the effect of ground scattering, and shielding structures; the third is the characteristic of detector, including the energy distribution of the scattered photon, the angular distribution of the scattered photon, and the position of the detector. The influences of the individual and combined parameters on gamma-ray skyshine phenomenon are very complicated. Therefore, these parameters were discussed in two respects, the effect on the evaluation and monitoring of skyshine dose rates. The effects of the energy and angular distribution of the equivalent point source have to be taken into consideration on the analysis of the skyshine dose rates when the volume source is encountered. The dedicated skyshine codes SKYDOSE and McSKY were revised to include the capability of dealing with these anisotropic sources.
Furthermore, a simplified method, based on the integral of the first collision kernel, is presented for performing gamma-ray skyshine calculations for the collimated sources. The first collision kernels were calculated in air for a reference air density by use of the EGS4 Monte Carlo code. These kernels can be applied to other air densities by making density corrections. The integral first collision kernel method has been used to calculate two of the ANSI/ANS skyshine benchmark problems and the results were compared with a number of other commonly used codes. Our results were generally in good agreement with others but only spend a small fraction of the computation time required by the Monte Carlo calculations. The scheme of the integral first collision kernel method for dealing with lots of source collimation geometry is also presented in this study.
摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 文獻回顧 1
1.2 研究方向 3
1.2.1 加馬射線天空散射之特性參數 3
1.2.2首次碰撞核仁積分法在加馬射線天空散射劑量分析之應用 5
第二章 程式介紹 8
2.1 SKYSHINE-III 8
2.1.1 計算模式 9
2.1.2 統計誤差 11
2.2 SKYDOSE 12
2.2.1理論與方法 12
2.2.2 幾何模型 14
2.3 McSKY 16
2.3.1 理論與方法 16
2.3.2 McSKY所用的混合計算法 17
2.3.3 屏蔽材料的選擇 18
2.4 MCNP 18
2.4.1 蒙地卡羅法簡介 18
2.4.2 程式特點 19
2.5 EGS4 21
2.5.1 程式功能 21
2.5.2 計算模式 22
2.5.3 統計誤差 24
2.5.4 亂數產生器 24
第三章 加馬射線天空散射的特性參數研究 26
3.1影響劑量評估之因素 26
3.1.1等效點射源 26
3.1.2 空氣特性 38
3.1.3 地面散射效應 39
3.1.4 距離 42
3.1.5劑量轉換因數 44
3.2 影響劑量監測之因素 44
3.2.1偵測點散射光子能量分佈 44
3.2.2偵測點散射光子角度分佈 46
3.2.3 偵測點位置 47
第四章 首次碰撞核仁積分法在加馬射線天空散射劑量分析之應用 50
4.1 介紹 50
4.2 材料與方法 50
4.2.1 首次碰撞核仁(The First Collision Kernel) 50
4.2.2 密度修正 52
4.2.3首次碰撞核仁積分法 53
4.3 結果 58
4.3.1 線束響應函數的比較 58
4.3.2 ANS-6.6.1計算範例I.1比較(4p發射角) 60
4.3.3 ANS-6.6.1計算範例I.2比較(盒狀幾何屏蔽結構) 60
4.3.4 非均向點射源(圓窖幾何屏蔽結構) 60
4.3.5 密度效應(圓窖幾何屏蔽結構) 61
4.3.6 雙層屏蔽牆幾何結構 61
第五章 結論與建議 67
5.1 結論 67
5.2 建議 68
參考文獻 69
論文發表
1.Effect of source angular distribution on the evaluation of gamma-ray skyshine
2.The integral first collision kernel method for gamma-ray skyshine analysis
3.Integrated Technique for Assessing Environmental Dose of Radioactive Waste Storage Installation
4.Gas bremsstrahlung and induced photoneutrons in the NSRRC's electron storage ring: a comparison of measurements and simulations
附錄
6.2、1.25、0.662 MeV三種能量光子在參考空氣密度為0.00122 g/cm3下之首次碰撞核仁
1. 江祥輝, “用過核燃料中期貯存設施監測技術之建立 1/3”, 放射性物料管理局八十五年度專題研究計畫期末報告, FCMA-8506, 1996
2. M.Ladu, M.Pelliccioni, P.Picchi, G.Verri, “A Contribution to the Skyshine Study”, Nucl. Instrum. Methods, 62, 51-56 (1968)
3. R.E.Lynch, J.W.Benoit, W.P.Johnson, C.D.Zerby, “A Monte Carlo calculation of air-scattered gamma rays”, ORNL –2292, Oak Ridge National Laboratory (1958)
4. M.Kitazume, “A Simple Calculation for Air-Scattered Gamma-Rays”, J. Nucl. Sci. Technol., 5, 464-467 (1968)
5. J.K.Shultis, R.E.Faw, M.S.Bassett, “The Integral Line-Beam Method for Gamma Skyshine”, Analysis. Nucl. Sci. Engg. 107, 228-245 (1991)
6. J.K.Shultis, R.E.Faw, A.A.Gui, R.C.Brockhoff, “Approximate Beam Response Functions for Gamma-ray and Neutron Skyshine Analysis”, Report 271, Kansas State University (1995)a
7. J.K.Shultis, R.E.Faw, M.H.Stedry, “McSKY: A Hybrid Monte-Carlo Line-Beam Code for Shielded Gamma Skyshine Calculations”, Report 9501, Kansas State University (1997)
8. J.K.Shultis, R.E.Faw, R.C.Brockhoff, “SKYDOSE: A Code for Gamma Skyshine Calculation Using the Integral Line-Beam Method”, Report 9503, Kansas State University (1998)
9. Y.Harima, H.Hirayama, Y.Sakamoto, N.Kurosawa, M.Nemoto, “Comparison of Line Beam Response Function for Gamma-ray Skyshine Analysis Based on Single Scattering Method with the Monte Carlo Calculations”, J. Nucl. Sci. Technol. 34 (8), 856-859 (1997)
10. American Nuclear Society, “American National Standard for Calculation and Measurement of Direct and Scattered Gamma Radiation from LWR Nuclear Power Plants”, ANSI/ANS-6.6.1-1987 Revision of ANSI/ANS-6.6.1-1979 (1987)
11. E. T. Clarke, “Gamma-Ray Scattering Near on Air-Ground Interface”, Nucl. Sci. & Engg., 27, 394-402, 1967
12. NCRP, “Radiation Protection Design Guidelines for 0.1-100 MeV Particle Accelerator Facilities”, National Council on Radiation Protection and Measurement, NCRP-51, 1977
13. C.M.Lampley, M.C.Andrews, M.B.Wells, “The SKYSHINE-III Procedure: Calculation of the Effect of Structure Design on Neutron, Primary Gamma-ray and Secondary Gamma-ray Dose Rates in Air”, Radiation Research Associates, Inc. Fort Worth, TX 76107 (1988)
14. 許任玓, “中距離天空散射加馬射線特性參數之研究”, 國立清華大學核子工程與工程物理研究所碩士論文, 1997
15. W.R.Nelson, H.Hirayama, D.W.O.Rogers, “The EGS4 Code System”, SLAC-265, Stanford Linear Accelerator Center, Stanford (1985)
16. M. B. Wells and R. B. Livesay, “ Calculational Procedure for Evaluating Time - and Spatial-Dependent Energy Deposition in Air for Anisotropic Nuclear Sources ” , Radiation Research Associates , Inc. Technical Report RRA-T78114 (1979)
17. J. D. Marshall , M. B. Wells , F. O. Leopard , and K. W. Tompkins, "Monte Carlo Procedures for Transport of X-Rays and Fluorescent Light Through a Spherical , Altitude Dependent Atmosphere" , Radiation Research Associates , Inc. Technical Report RRA-T94-1 ( 30 June 1969 )
18. J. D. Marshall , " Utilization Instructions for ZAPN , A Monte Carlo Neutron Transport Procedure" , Radiation Research Associates , Inc. Technical Report RRA-N7517 ( September 1975 )
19. J. D. Marshall , " Utilization Instructions for ZAPGAM , A Monte Carlo Gamma-Ray Transport Procedure" , Radiation Research Associates , Inc. Technical Report RRA-N7601 ( September 1976 )
20. W. W. Engle, Jr. , " ANISN : A One-Dimensional Discrete Ordinates Transport Code with Anisotropic Scattering, " Oak Ridge National Laboratory, K-1693 (Jun. 1973)
21. G. L. Simmons, " The SAI/EPRI Albedo Information Library, " Science Applications, Inc. EPRI NP-1017 (March 1979)
22. “SKYDOSE程式修正版使用手冊”, 台電委託”向天輻射劑量分析程式標準尺度之研究”研究計畫, 國立清華大學工程與系統科學系, 1999
23. F.A. Khan, Air Ground Interface Effects for Gamma Skyshine, MS Thesis, Kansas State University, Manhattan, KS, 1995
24. A.A. Gui, Response Functions for Neutron Skyshine Analyses, PhD Dissertation, Kansas State University, Manhattan, KS 66506, 1994
25. "McSKY程式修正版使用手冊", 台電委託"向天輻射劑量分析程式標準尺度之研究"研究計畫, 國立清華大學工程與系統科學系, 1999
26. M.H. Stedry, Monte-Carlo Line-Beam Calculation of Gamma-Ray Skyshine for Shielded Sources, MS Thesis, Kansas State University, Manhattan, KS 66506, 1994
27. J.F.Briesmeister (Ed.), “MCNP-A General Monte Carlo N-Particle Transport Code Version 4C”, Los Alamos National Laboratory, Los Alamos, New Mexico, LA=13709-M Manual (2000)
28. E. Storm , H. I. Israel , " Nucl. Data Tables, " A7565 (1970)
29. Marsaglia G, Zaman A and Tsang W (1988) "Letters in Statistics and Probability" ; see also Florida State University, Supercomputer Research Institute, Reports FSU-SCRI-87-50 and FSU-SCRI-89-36
30. RSICC code, "DOORS3.2: One, Two- and Three Dimensional Discrete Ordinates Neutron/Photon Transport Code System", RSICC CCC-650, Radiation Safety Information and Computational Center, Oak Ridge National Laboratory, 1998
31. 江祥輝, "向天輻射劑量分析程式標準尺度之研究", 國立清華大學工程與系統科學系, 88-89台電委託計畫期末報告, 1999
32. R.D. Sheu, B.J. Chang, I.J. Chen, and S.H. Jiang. “Effect of source angular distribution on the evaluation of gamma-ray skyshine”, J Nucl. Sci. Technol., Proceedings of Ninth International Conference on Radiation Shielding, ICRS-9, Supplement 1, pp. 645-649 (2000)
33. R.D. Sheu, C.S. Chui, and S.H. Jiang. "The integral first collision kernel method for gamma-ray skyshine analysis", Radiation Physics and Chemistry 68, pp. 727-744 (2003)
34. International Commission on Radiological Protection. “Data for use in protection against external radiation”. ICRP Publication 51. (Ann. ICRP 17(2-30)) (1988)
35. Reuter-Stokes, RSS-120/121 Gamma Radiation Sensors Operation Manual, Ver. 1.4, 1991
36. S.H. Jiang, C.G. Liu, U.T. Lin, M.C. Horng. “The characteristics of the skyshine gamma-ray field,” Radiation Protection and Shielding Topical Meeting, No. Falmouth, Massachusetts, April 21-25, pp. 803-808 (1996)
37. S.H. Jiang, R.D. Sheu, U.T. Lin, M.C. Horng. “A detailed study on skyshine gamma rays,” 1997 International Conference on Radiation Dosimetry and Safety, Taipei, Taiwan, March 31-April 22, pp.482-488 (1997)
38. J.H. Hubbell, “Photon mass attenuation and energy absorption coefficients from 1 to 20 MeV”, Int. J. Appl. Radiat. Isot. 33, 1269-1290 (1982)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top