跳到主要內容

臺灣博碩士論文加值系統

(3.235.174.99) 您好!臺灣時間:2021/07/24 20:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:苗新元
研究生(外文):Hsin-Yuan Miao
論文名稱:奈米碳管成長機制及其作為微放電拋光電極應用之研究
論文名稱(外文):A Study of the Growth Mechanism of Carbon Nanotubes and its Applications for the Electrodes of Micro-EDM Polishing Process
指導教授:歐陽敏盛歐陽敏盛引用關係呂助增
指導教授(外文):Min-Shen OuyangJuh-Tzeng Lue
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:195
中文關鍵詞:奈米碳管電子場發射特性化學氣相沈積法微放電加工
外文關鍵詞:carbon nanotubesfield emission propertieschemical vapor deposition (CVD)micro electric discharge machining (micro-EDM)
相關次數:
  • 被引用被引用:4
  • 點閱點閱:175
  • 評分評分:
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:3
奈米碳管成長機制及其作為微放電拋光電極之應用研究

博士生:苗新元 指導教授:歐陽敏盛 博士
呂助增 博士
國立清華大學 工程與系統科學系

中文摘要
關鍵字:奈米碳管、電子場發射特性、化學氣相沈積法、微放電加工。

本研究的目標是生產一維之新穎奈米材料­奈米碳管 (carbon nanotubes , CNTs); 並根據其具有特殊之物理性質,將它作為新世代工業材料之可行性研究。故本研究的中心架構與思想是,引進新材料(CNTs),開發並生產且創造其新的工業應用價值,為新世紀機械工業貢獻心力。首先自行建構生產設備,以製造條件適用之CNTs。接著利用CNTs具有之高剛性與電子場發射特性,結合機械非傳統加工之放電加工技術,預期使CNTs能成為可執行微放電拋光加工之工具電極。
整個研究步驟是:
(1)首先研究開發新的奈米碳管(CNT)成長方式。為避免因能隙的阻隔而使電能消秏,本研究不同於以往文獻上所使用的;在矽基板上鍍催化劑薄膜的成長方式。而是創新的提出以銅合金(alloy,包含催化劑)為基板,並利用本實驗室自製的射頻輔助熱鎢絲化學氣相蒸鍍[radio frequency (RF) assisted hot filament chemical vapor deposition (HFCVD)]方式生產CNTs。期使整個生產流程,符合工作現場的規格需求,且在生產時能控制最佳化之成長參數,使得所生產的CNTs成品,特別適合於微放電加工的電性要求。
根據結果顯示,在適當的成長參數控制下,銅合金成長CNTs是可行的。並發現CNTs是成長在含催化劑含量多的樹枝晶(dendrite)上為多,在樹枝間(interdendrite) 上則成長的量極少。但,這種情形會隨著催化劑的數量增加而改變; 即當合金中除了基材(matrix)外,金屬催化劑的數量多於二元時,在相同的成長參數下,CNTs成長則並不拘限於樹枝晶上,而是在基板上呈全面性的成長。
(2) 在生產製造CNTs方面。本研究以甲烷(CH4)為碳源(carbon source),氫氣(H2)、氨氣(NH3)為稀釋氣體(dilute gas)進行反應。反應所須的溫度由鎢絲加熱器維持,微波源(microwave cavity)則提供反應氣體在進入反應腔體前作預解離的動作。13.56 MHz的R.F. 產生器(generator)所提供的能量不但使得反應氣體得充份解離, 以利進行反應,更提供一R.F self-bias之負偏壓。此一負偏壓經實驗證實有利於CNTs之準直度的提升。
在研究中更發現,氫蝕刻 (hydrogen etching)有助於合金基板表面形成奈米級催化劑微顆粒。而經由控制氫蝕刻之時間長短,可控制催化劑顆粒被微細化之尺寸,進而控制CNT直徑之大小。此一結果是本研究在參數化成長CNTs上的另一大貢獻。
研究過程中應用掃描式電子顯微鏡(SEM)、能量散佈光譜儀(EDS)、X射線能量散佈分析儀(XRD)、微拉曼(Micro Raman)、高解析度穿透式電子顯微鏡(HRTEM)等分析儀器進行CNT表面微結構、鍵結結構、碳層結構之形貌與品質分析。本研究獨特的HFCVD設備所生產的CNTs屬多層壁奈米碳管(multi-wall carbon nanotubes, MWCNTs),其成長機制(growth mechanism)會隨催化劑顆粒大小與稀釋氣體之不同而有差異,甚致影響生成結構與其他特性。在論文中有詳細的論述。
(3)在應用方面,以本研究所生產之多層壁奈米碳管,作為微放電加工之工具電極,並製作專用的電晶體放電電路(為能精確的計算出放電之能量)與加工機構,來進行微放電拋光加工,期許能提升並改善須極度表面平坦度要求的高科技工件表面粗糙度之問題。在本研究中以在銅合金基板上成長之多層壁奈米碳管 (約110 nm直徑、3 μm長) 為工具電極,對單面拋光、n-type (10~100 Ω-cm) 矽晶片作微拋光加工,經實驗驗證平均表面去除率可達30 nm/min。
A Study of the Growth Mechanism of Carbon Nanotubes and its Applications for the Electrodes of Micro-EDM Polishing Process

Ph. D. student:Hsin-Yuan Miao Advisors:Dr. Min-Shen Ouyang
Dr. Juh-Tzeng Lue
Department of Engineering and System Science
National Tsing Hua University

Abstract
Key words:carbon nanotubes、field emission properties、chemical vapor deposition (CVD)、micro electric discharge machining (micro-EDM)。

In this work we attempt to design and to fabricate the new one dimensional material – carbon nanotubes (CNTs) in a flourish way, and to investigate whether it is suitable for industry applications. The main thrust of this research is to develope a new growth process that results in a fertile CNTs for the exploitation of surface modification by the electric discharge.
First of all, we have developed a growth chamber equipped with facilities that can produced the well-aligned CNTs on the different substrate. Then, to utilize the properties of high rigidity and field emission of CNTs, and to combine with the idea of micro electric discharge machining (micro-EDM), it is to expect that making CNTs could as the tool electrode for precise surface polish.
The steps of this research are:
(1) Carbon nanotubes(CNTs) are successfully grown on alloys made of iron groups and metals by a microwave enhanced hot-filament method with the radio-frequency (rf) field induced self-bias. A precursor of hydrogen etching to produce catalyst nanoparticles on substrate surface is crucial for the CNTs growth. Exploiting bulk-alloy catalysts such as Cu-Ni, Cu-Fe, Cu-Co, and Cu-Ni-Fe-Co for substrates instead of using usual thin film catalysts on Si substrates enunciates a new growth mechanism which debates to the mechanism of dissolving carbons in eutectic nanoparticles and then precipitating graphite near the contact surface of the particle and the substrate.
(2) Bunched and multi-circularly wrapped carbon nanotubes (CNT) are observed to grow on alloy substrates based on iron group metals and copper by a microwave enhanced hot-filament method with a dilute gas of ammonia at a proper RF self-bias. The grown size of CNTs embodied in the grain sizes of conducting bulk alloy catalysts such as Cu-Ni, Cu-Fe, Cu-Co, and Cu-Ni-Fe-Co are controlled by a precursor time of hydrogen plasma etching. Species with different structural features and homogenization of CNTs samples are produced crucially attributed to various reactant gases and self-bias induced by the radio frequency field.
(3) In this work a miniscule electrode for pursuing the precise surface modification by exploiting multi-wall carbon nanotubes (MWCNT) as the discharge electrodes was studied. The excellent upright growth of carbon nanotubes on copper based alloy substrate by a radio frequency (RF) assisted hot filament chemical vapor deposition (HFCVD) method suggests us to implement MWCNTs as the miniature electrodes for discharge machining. The results reveal that the spoiling rates for the un-polishing of n-type Si wafer ( 10~100 Ω-cm) can up to 30 nm/min with the electrodes to be much endurable to be distorted. It is expected that that MWCNTs can be applied to non-conventional material processing especially in miniature discharge machining.
目錄
中文摘要………………..……………………………………………………….Ⅰ
英文摘要………………………..………………………………………...……..Ⅲ
致謝………………...……………………………………………………….……Ⅵ
目錄…………………………...…………………………………………...……..Ⅸ
圖目錄……………..………………………………………………………….....Ⅹ
表目錄……………………..………………………………………………….ⅩⅥ
第一章 緒論…………………...……………….…………………...………1
1.1 研究背景……………………………..……………………………………1
1.2 研究動機與目的……..……………………………………………………4
1.3 論文架構………..…………………………………………………………6
第二章 文獻回顧………………………...………………………………...10
2.1 碳元素特性………..……………………………………………………..10
2.1-1 電子混成軌道特性與材料結構………………………….…..…..11
2.1-2 碳相關應用材料……………………………..…………………...14
2.2 奈米碳管………………………………………..………………………..19
2.2-1奈米碳管的成長法及條件………………………..…………...….20
2.2-2 奈米碳管的成長模型(growth mechanism)……………………….23
2.2-3 奈米碳管的物理性質……………………………………..…...…37
2.2-4 奈米碳管的其他用途……..……………………………………...42
第三章 實驗設備簡介………………………………..………………….71
3.1 生產製造設備………………………………..………………………..…72
3.2 檢測設備……………..……………………………………………..……74
第四章 以銅合金基板成長奈米碳管………………….………..…...86
4.1 合金基板組成材料之選擇……………………………..………………..87
4.2 奈米碳管成長參數條件之選擇……………………………..………..…91
4.3 初期成長結果及參數修正…………………………..…………………..92
4.3-1 碳源過量之影響…………………..……………………………...93
4.3-2 反應溫度過高之影響………………………..…………………...93
4.3-3 RF self bias之影響……..………………………………………....95
4.3-4催化劑厚度之影響…………………………..……………………99
4.4 控制成長奈米碳管…………………………..………………………....101
4.4-1 以催化劑之濃度控制成長密度……………..……………….…101
4.4-2 以RF self bias之大小控制筆直度………………..…………….102
4.4-3 以氫蝕刻之時間控制成長直徑及其成長機制…………..….…103
4.4-4 以改變反應物之物種控制成長結構及其成長機制……..…….106
第五章 MWCNTs在微放電表面拋光加工上之應用……..…....154
5.1 簡介…………..…………………………………………………………154
5.2 實驗步驟………..………………………………………………………155
5.3 實驗結果與討論………..……………………………………………....156
結論……………………………..……………..…………………………….…173
未來研究方向與建議…………………………..…..………………….……174
參考文獻………………………….………………………………………..….175
附錄……………………………..…………………………………………..….182
A.小尺寸效應………..……………………………………………………...182
B.表面效應…………………..……………………………………………...183
C. Laplace Pressure Effect……..…………………………………………….184
D. Field Emission Theory………..…………………………………………..187
簡歷與自傳………………………………………………..………………………………
參考文獻
Chapter 1

1. D. Y. Sheu, T. Masuzawa, Inter. J. Electrical Machining, 8, 15, 2003
2. K. Egashira, T. Masuzawa, Annals CIRP, 48, 131, 1999
3. Z. Y. Yu, T. Masuzawa, Annals CIRP, 47, 169, 1998
4. Patent Analysis-Nanotechnology Series, “Vol. 1 Carbon Nanotube”, science and Technology Information Center, 2002
5. A. G. Rinzler, J. H. Hafner, P. Nordlander, D. T. Colbert, and R. E. Smalley, Science 269, 1550, 1995
6. S. Ijima, Nature 354, 1991, 56; S. Ijima, T. Ichihashi, Nature 363, 1993, 603
7. http://www.nec.com/index.html
8. http://www.ntrc.itri.org.tw/index.jsp /

Chapter 2

9. 大谷衫郎、大谷朝男共著,賴耿陽 譯著,應用新科技碳纖維材料入門,復漢出版社有限公司,2000年,台南市
10. J. A. Howe, J. Chem. Phys., 1934, 2, 551; X. X. Bi, M. Jagtyoen, M. Endo, D. Chowdhury, K. Ochoa, R. Derbyshire, F. J. Dresselhaus, J, Mater. Res., 1975, 10, 2875
11. H. W. Kroto, J. R. Heathh, S. C. Obrien, R. F. Curl, R. E. Smalley, Nature, 1985, 318, 162
12. 許明發編楮,碳、碳纖維、碳/碳複合材料之加工技術及應用,滄海書局,1997年,台中市
13. http://freebsd.ac.nctu.edu.tw/education/edu_analysis.php
14. Physcal Properties of Carbon Nanotubes, edited by R. Saito, G. Dresselhaus, M. S. Dresselhaus (Imperial College Press, 1998), Chapter 3
15. H. Baker, et al., ASM Handbook, Volume 3, Alloy Phase Diagrams, December 1992
16. R. T. Baker, J. R. Alonzo, et al., Journal of Catalysis 77, 74, 1982
17. Y. Saito, Carnon 33, 7, 979-988, 1995
18. T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smally, Chem. Phys. Lett. 243, 49, 1995
19. Chemistry and Physics of Carbon, edited by R. T. K. Baker and P. S. Harris (Marcel Dekker, 1978)
20. R. Sen, A. Govindaraj and C. N. R. Rao, Chem. Phys. Lett. 267, 276, 1997
21. S. Fan, M. G. Chaplin, N. R. Franklin, T. W. Tombler, A. M. Cassell ans H. Dai, Science 283, 512, 1999
22. C. J. Lee and J. Park, Appl. Phys. Lett. 77, 3397, 2000
23. Z. F. Ren, Z. P. Huang, J. H. Wang, P. Bush, M. P. Siegal and P. N. Provencio, Science 282, 1105, 1998
24. C. Bower, W. Zhu, S. Jin, O. Zhou, Appl. Phys. Lett. 77, 830, 2000
25. A. T. Matveev, D. Golberg, V. P. Novikov, L. L. Klimkovich and Y. Bando, Carbon 39, 155, 2001
26. USP. 5753088
27. J. Goma and A. Oberlin, Thin Solid Film 65, 221, 1980
28. R. E. Smally and B. I. Yakobson, Solid State Communication 107, 597, 1998
29. Gavillet, et al., Carbon 40, 1649-1663, 2002
30. J. M. Haile, Molecular Dynamics Simulation Elementary Methods, Wiley Professional Paperback Edition Published, 1997
31. A. Thess, R. E. Smalley, et al., Science 273, 483
32. http://www.improb.com/ig/ig-top.html
33. Rahul Sen, Y. Ohtsuka, Chemical Physics Letters 332, 467-473, 2000
34. D. B. Geohegan, H. Schittenhelm, et al., Applied Physics Letters 78, 21, 3307-3309, 2001
35. A. Gorbunov, O. Jost, et al., Applied Surface Science 197-198, 563-567, 2002
36. A. Gorbunov, et al., Applied Surface Science 197-198, 563-567, 2002
37. A. Gorbunov, O. Jost, et al., Carbon 40, 113-118, 2002
38. Henning Kanzow and Adalbert Ding, Physical Review B 60, 15, 11180-11186, 1999
39. Ph. Buffat and J. P. Borel, Physical Review A 13, 6, 2287-2298, 1976
40. James S. Reed, Principles of Ceramics Processing, Second Edition, John Wiley & Sons, Inc., 1997
41. L. V. Radushkevich and V. M. Lukyanovich, Zh. Fiz. Khim. 26, 88, 1952
42. L. J. E. Hofer, E. Sterling, et al., Journal of Physical Chemistry 59, 1153, 1955
43. R. T. K. Baker, M. A. Barber, et al., Journal of Catalysis 26, 51-62, 1972
44. G. G. Tibbetts, Journal of Crystal Growth 66, 632-638, 1984
45. A. Sacco, JR., Journal of Catalysis 85, 224-236, 1984
46. I. Stewart, M. J. Tricker, et al., Journal of Catalysis 94, 360-369, 1985
47. Z. K. Tang, Lingyun Zhang, Science 292, 2462-2465, 2001
48. Xianbao Wang, Wenping Hu, et al., Carbon 39, 1533-1536, 2001
49. Hongwei Zhu, Lijie Ci, et al., Diamond and Related Materials 11, 1349-1352, 2002
50. Y. Tu, Z. P. Huang, Applied Physics Letters 80, 4018-4020, 2002
51. Vincent Jourdain, Henning Kanzow, et al.,Chemical Physics Letters 364, 27-33, 2002
52. S. Frank, P. Poncharal, Z. L. Wang and W. A. Deheer, Science 280, 1744, 1998
53. S. Sanvito, Y. K. Kwon, D. Tomànek and C. J. Lambert, Phys. Rev. Lett. 84, 1974, 2000
54. Ishan Barin, Thermochemical Data of Pure Substances 3rd
55. N. A. Vasileva, R. A. Buyanov, Kinetics and Catalysis 34, 748, 1993
56. J. Hone, M. Whitney and A. Zettle, Synthetic Metals, 103, 2498, 1999
57. http://www.foresight.rg/Conferences/MNT7/Papers/Che/index.html
58. S. Berber, Y. K. Kwon and D. Tomanek, Phys. Rev. Lett. 84, 4613, 2000
59. R. Saito, M. Fujita, G. Dresselhaus and M. S. Dresselhaus, Appl. Phys. Lett. 60, 2204, 1992
60. R. Saito, G. Dresselhaus and M. S. Dresselhaus, J. Appl. Phys. 73, 494, 1993
61. J. W. G. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley and C. Dekker, Nature 391, 59, 1998
62. T. W. Odom, J. L. Huang, P. Kim and C. M. Lieber, Nature 391, 62, 1998
63. C. Dekker, Carbon Nanotubes as Molecular Quantum Wires, Physics Today, May, 22, 1999
64. http://www.pa.msu.edu/~tomanek/tomanek.html
65. http://www.aip.org/enows/physnews/1996/split/pnu279-2.htm
66. http://www.wag.caltech.edu/foresight/foresight_2.html
67. E. Dujardin, T. W. Ebbesen, A. Krishnan, P. N. Yianilos and M. M. J. Treacy, Phys. Rev. B58 (20), 14013, 1998
68. E. Wong, P. Sheehan and C. Lieber, Science 277, 1971, 1997
69. http://www.fam.cie.uva.es/~arubio/psi_k/node5.html
70. 呂助增 著,固態電子學,明文書局,1996,台北市
71. R. Gomer, Field Emissio and Field Ionization, Library of Congress Cataloging-in-Publication Data, 1993, New York
72. 陳聖元,碳基材料長及其場發射特性之研究,國清華大學電子工程研究所博士論文,2003
73. R.H. Fowler and L.W. Nordheim, Proc. Roy. Soc. (London), A119, (1928)173
74. E.L. Murphy and R.H. Good, Phys. Rev., 102, (1956)1464
75. R. Gomer, “Field emission and Field Ionization”, American Institute of Physics, New York, 1993
76. A. Modinos, “Field, Thermionic, and Secondary Electron Emission Spectroscopy”, Plenum, New York, 1984
77. J.T. Lue, Solid-State Electron, 23, (1980)263.
78. R. Stratton, Phys. Rev. 125, (1962)67.
79. R. Stratton, Proc. Phys. Soc. London, B 68, (1955)746.
80. D.K. Ferry, “Semiconductor”, Macmillan Publishing Company, 1991
81. C.L. Chen, C.S. Chen, J.T. Lue, Solid-State Electron, 44, (2000)1733.
82. C. Bandis and B.B. Pate, Phys. Rev. B, 52, (1995)12056
83. A. G. Rinzer, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert and R. E. Smalley, Science 269, 1550, 1995
84. W. A. de heer, A. Chatelain and D. Ugarte, Science 270, 1179, 1995
85. P. G. Collins and A. Zettl, Appl. Phys. Lett. 69 (13), 1969, 1996
86. M. Ge and K. Sattler, Appl. Phys. Lett. 65 (18), 2284, 1994
87. A. A. Setlur, J. M. Lauerhaas, J. Y. Dai R. P. H. Chang, Appl. Phys. Lett. 69 (3), 345, 1996
88. F. Okuyama, T. Hayashi and Y. Fujimoto, J. Appl. Phys., 84 (3), 1626, 1998
89. R. Martel, T. Schmidt, H. R. Shea, T. Hertel Ph. Avouris, Appl. Phys. Lett., 73 (17), 2447, 1998
90. S. J. Tams, A. R. M. Verschueren and C. Dekker, Nature 393, 49, 1998
91. S. J. V. Frankland, D. W. Brenner, Chem. Phys. Lett. 334, (2001) 18.
92. B. Gao, A. Kleinhammes, X. P. Tang, C. Bower, L. Fleming, Y. Wu, O. Zhou, Chem. Phys. Lett., 307, 153, 1999
93. C. Niu, E. K. Sichel, R. Hoch, D. Moy and H. Tennent, Appl. Phys. Lett. 70 (11), 1480, 1997
94. G. Nagy, M. Levy, R. Scarmozzino, R. M. Osgood, Jr. H. Dai, R. E. Smalley and G. F. McLane, Appl. Phys. Lett., 73 (4), 529, 1998
95. L. Jin, C. Bower and O. Zhou, Appl. Phys. Lett., 73 (9), 1197, 1998
96. R. S. Ruoff, D. C. Lorents, R. Laduca, S. Subramoney and B. Chen, Nature 364, 514, 1993
97. P. Calvert, Nature 357, 365, 1992
98. J. M. Planeix, et al., J. Am. Chem. Soc., 116, 7935, 1994
99. X. Blasé, J. C. Charlier, A. De Vita and R. Car, Appl. Phys. Lett., 70 (2), 197, 1997
100. L. Chico, et al., Phys. Rev. Lett., 76 (6), 971, 1996

Chapter 3

101. R. Saito, T. Takeya , T. Kimura, G. Dresselhaus, M. S. Dresselhaus, Phys. Rev. B 57, 7, 1998
102. E. Richter, K. R. Subbaswamy, Phys. Rev. Lett., 79, 105, 1997
103. M. Ge, et al., Phys. Rev. Lett., 65, 2811, 1994

Chapter 4

104. E. B. Palen, T. Pichler, G. G. Fuentes, A. Graff, R. J. Kalenczuk, Chem. Phys. Lett., 378, 516, 2003
105. Y. Murakami, Y. Miyauchi, S. Chiashi, S. Maruyama, Chem. Phys. Lett., 377, 49, 2003
106. Y. Murakami, S. Yamakita, T. Okubo, S. Maruyama, Chem. Phys. Lett., 375, 393, 2003
107. A. Yamamoto, T. Tsutsumoto, Diamond and Related Materials 11, 748, 2002
108. G. W. Lee, J. Jurng, J. Hwang, Letters to the Editor / Carbon 42, 667, 2004
109. Ch. Emmenegger, P. Mauron, A. Zuttel, Ch. Nutzenadel, A. Schneuwly, r. Gallay, L. Schlapbach, Applied Surface Science 162-163, 452, 2000
110. D. Y. Ding, J. N. Wang, Z. L. Cao, J. H. Dai, F. Yu, Chem. Phys. Lett. 371, 333, 2003
111. Y. Shimizu, et al., Chem. Phys. Lett. 370, 774, 2003
112. F. G. Celii, J. E. Butler, Appl. Phys. Lett., 54 (11), 1031, 1989
113. M. Frenklach and K. E. Spear, J. Mater. Res., 3 (1), 133, 1988
114. S. Y. Chen, J. T. Lue, Phys. Lett. A 309, 114, 2003
115. 陳照勗,以微波電漿化學氣相沈積法成長P型鑽石薄膜及其結構分 析,國立清華學物理研究所碩士論文,1997
116. O. M. Kuttel, O. Groening, C. Emmenegger and L. Schlapbach, Appl. Phys. Lett., 73 (15), 2113, 1998
117. L. C. Qin, D. Zhou, A. R. Krauss and D. M. Gruen, Appl. Phys. Lett., 72 (26), 3437, 1998
118. Z. K. Tang, H. D. Sun, J. Wang, J. Chen and G. Li, Appl. Phys. Lett., 73 (16), 2287, 1998
119. S. Iijima, T. Ichihashi and Y. Endo, Nature 356, 776, 1992
120. C. Journet et al., Nature 388, 756 (1997)
121. G. S. Choi et al., J. Appl. Phys. 91, 3847 (2002)
122. W. D. Zhang, Y. Wen, W. C. Tjiu, G. Q. Xu, L. M. Gan, Appl. Phys. A 74, 419 (2002)
123. Y. C. Choi et al., J. Appl. Phys. 88, 4898 (2000)
124. Y. C. Choi et al., J. Vac. Sci. Technol. A 18, 1864 (2000)
125. L. Delzeit et al., J. Appl. Phys. 91, 6027 (2002)
126. L. H. Chan, K. H. Hong, S. H. Lai, X. W. Liu, H. C. Shih, Thin Solid Films 423, 27 (2003)
127. A. M. Rao et al., Science 275, 187 (1997)
128. Y. C. Choi, et al., J. Appl. Phys. 88, 4898, 2000
129. A. C. Dillon, M. J. Heben, Appl. Phys. A 72, 133, 2001
130. Ph. Buffat and J. P. Borel, Phys. Rev. A 13, 2287, 1976
131. M. S. Dresselhaus, G. Dresselhaus, R. Saito, Phys. Rev. B 45, (1992) 6234.
132. S. J. V. Frankland, D. W. Brenner, Chem. Phys. Lett. 334, (2001) 18
133. A. Thess, et. al., Science 273 (1996), 483

Chapter 5

134. R. S. Ruoff and D. C. Lorents, Carbon 33, 1995, 925
135. J. Hone, et al., Appl. Phys. A 74, 2002, 339
136. F. Wakaya, K. Katayama, K. Gamo, Microelectron. Eng. 67-68, 3003, 853
137. C. Goze, et al., Synth. Met. 103, 1999, 2500
138. G. Pirio, et al., Nanotechnology 13, 2002, 1
139. S. Y. Chen, H. Y. Miao, J. T. Lue, M. S. Ouyang, J. Phys. D: Appl. Phys. 37, 2004, 273
140. H. Y. Miao, J. T. Lue, S. K. Chen, M. S. Ouyang, European J. Phys. : Appl. Phys. (2004), accepted.
141. V. I. Merkulov, et al., Appl. Phys. Lett. 80, 2002, 4816
142. S. H. Tsai, C. W. Chao, C. L. Lee, H. C. Shih, Appl. Phys. Lett. 74, 1999, 3462
143. W. Z. Li, J. G. Wen, Z. F. Ren, Appl. Phys. A 74, 2002, 397
144. http://www.pa.msu.edu/cmp/csc/ntproperties/quickfacts.html
145. J. T. Lue, S. Y. Chen, C. L. Chen, M. C. Lin, J Non-Crystalline Solids 2000;265:230-7.
146. S. Y. Chen, J. T. Lue, New J Physics 2002;4:79.1-79.7
147. S. Y. Chen, J. T. Lue, Phys Lett A 2003;309:114-20.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊