跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/03 11:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊宗翰
研究生(外文):Tzung -Han Yang
論文名稱:以分子動力學模擬液態水之薄膜蒸發與奈米液滴在恆溫白金表面上的物理過程
論文名稱(外文):Molecular Dynamics Simulations of Liquid Water Film Evaporation and Physical Processes of Nano Water Droplet on an Isothermal Platinum Surface
指導教授:潘欽
指導教授(外文):Chin Pan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:135
中文關鍵詞:分子動力學模擬平行化程式設計薄膜蒸發恆溫白金表面
外文關鍵詞:Molecular Dynamics SimulationParallel ProgrammingWater Film EvaporationIsothermal Platinum Surface
相關次數:
  • 被引用被引用:3
  • 點閱點閱:121
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
本研究以分子動力學理論為基礎並結合高效能和MPI平行化的程式設計,模擬水分子在介觀級奈米尺度下相關的物質特性和現象並進一步提出物理解釋與探討。
在液態與超臨界狀態下均質系統中水分子性質的模擬,利用徑向結構分佈函數探討的氣液相態結構分佈和特徵,發現分子間形成氫鍵的距離約1.86埃;擴散係數隨溫度升高和壓力下降而上升,超臨界的擴散能力優於常溫液態;液態下形成氫鍵配位數為三或四的比例居多,兩者加總大約佔整體的59%∼86%以上,分子間氫鍵效應較為明顯。在微液膜蒸發過程的模擬,發現於液膜表面存在一連續密度變化的過渡層,並且計算出介面厚度隨溫度上升而增加;結合Shrage的理論模式,計算微液膜的蒸發係數,數值範圍約0.3∼0.6之間且隨介面壓力增加而呈現增加的趨勢;利用PV-WIN影像處理,可具體觀察分子在介面凝結蒸發和真空中動態過程和碰撞機制。奈米液滴在恆溫白金表面的模擬,液滴經歷不同的物理階段:初期表面吸附、擴散形成薄膜、等溫加熱蒸發和乾化、於真空中叢聚成核以及合併重新凝結成液滴,並伴隨不同的能量變化;根據接觸角的計算,顯示液滴吸附於白金表面過程屬於親水效應。
The present study simulates some material properties and phenomena of water in the minute nano scale by molecular dynamics simulation theory and high performance programming with MPI parallel method. We also further discuss those simulation results and offer some arguments with appropriate point of physical view.
In a homogenous system, water molecules are simulated at two different thermodynamic states including liquid at various different temperature and supercritical water. According to radial distribution functions, a distance of hydrogen bond between two water molecules is about 1.86 angstrom. Self-diffusion coefficient increases with the temperature and decreases with pressure. Capability to diffuse at supercritical states is better than at liquid states. Moreover in a liquid water state, there are much higher percentage with three or four the average number of hydrogen bonds formed by each molecule and stronger hydrogen interaction than that in a supercritical state. Summing percentage of two parts is about between 59% and 86%.
Simulating evaporation processes of a thin liquid water film demonstrates that there is a transition layer with density varying continuously on a thin liquid film and this interfacial thickness increases with increasing temperature. Based on the Schrage model, the evaporation coefficients of thin liquid film are between 0.3 from 0.6 and increase with interfacial pressure. It is very evident to observe that molecules take place processes of evaporation and condensation at the interface of liquid film and collisions in a vacuum by using image software celled PV-WIN.
There are various different physical processes when a nano-water droplet is close to an isothermal platinum surface: contact, adsorption, surface diffusion, evaporation and platinum surface to dry off, nucleation of cluster and reformation of droplet. Besides, total energy of droplets changes during different states. Finally, according to measuring contact angle, the platinum surface is found to be hydrophilic to the nano-water droplet.
摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 IX
表目錄 XV
第一章 緒論 1
1-1 研究背景與動機 1
1-2 研究方法與目的 3
1-3 論文的架構 5
第二章 文獻回顧 7
2-1 分子動力學之相關文獻 7
2-2 均質水分子模擬之相關文獻 8
2-3 微液膜蒸發之相關文獻 11
2-4 微流體在金屬表面上模擬之相關文獻 13
第三章 分子動力學理論 15
3-1 核心理論 15
3-2 分子位能勢函數 15
3-2.1 氬原子間的位能勢函數 16
3-2.2 水分子間的位能勢函數 17
3-2.3 水分子與白金原子間的位能勢函數 19
3-3 週期性邊界條件 20
3-4 最小映射法則 21
3-5 分子間作用力計算的簡化 21
3-5.1 牛頓第三運動定律 22
3-5.2 截斷半徑 23
3-5.3 Verlet相鄰列表 24
3-6 計算精確度的提升 26
3-6.1 常用數值積分方法 26
3-6.2 計算參數無因次化 27
3-7 計算程式平行化 27
3-7.1 MPI平行程式設計 28
3-7.2 應用於分子動力學計算 29
3-7.3 平行電腦簡介 33
3-8 初始條件的設定 34
3-9 系統的溫度控制與程式的主體架構 35
第四章 均質系統的水分子模擬 45
4-1 水分子的基本結構 45
4-2 模擬系統參數的設定 46
4-3 徑向結構分佈函數 48
4-4 自我擴散係數 50
4-5 水分子的氫鍵配位數 52
第五章 微液膜的蒸發模擬 67
5-1 前言 67
5-2 模擬系統的相關設定 68
5-3 微液膜的密度分佈 69
5-4 氣液介面厚度相關分析 70
5-5 微液膜的溫度分佈 71
5-6 微液膜蒸發係數計算 72
5-7 微液膜的分子蒸發機制 74
第六章 奈米液滴在恆溫白金面的物理現象模擬 100
6-1 前言 100
6-2 白金基版的溫控模式 101
6-3 模擬系統的相關設定 102
6-4 各個階段的物理現象 103
6-5 各個階段的能量變化 108
第七章 結論與建議 127
參考文獻 131
Alder B. J. and Wainwright T. E. (1957).“Phase transition for a hard sphere system,” J. Chem. Phys., vol. 27, p1208-1209.
Alejandre J., Tildesley D. J. and Chapela G.. A. (1995). “Molecular dynamics simulation of the orthobaric densities and surface tension of water,”J. Chem. Phys., vol 102, p4574-4583.
Allen M. P. and Tildesley D. J., “Computer Simulation of Liquids,”Clarendon Press, Oxford, 1987.
Andersen H. C. (1980). “Molecular dynamics at constant pressure and/or temperature,” J. Chem. Phys., vol. 72, p2384-2393.
Argyropoulos P., Scott* K. and Taama W. M. (1999). “Carbon dioxide evolution patterns in direct methanol fuel cells,”Electrochimica Acta, vol. 44, p3575-3584.
Berendsen H. J. C., Grigeira J. R. and Straatsma T. P. (1987). “The missing term in effective pair potentials,” J. Phys. Chem., vol. 91, p6269-6271.
Berendsen H. J. C., Postma J. P. M., Van Gunsteren W. F. and Hermans J. (1981). “Interaction models for water in relation to protein hydration,” In: Pullman B (ed) Intermolecular Forces. Riedel, Dordrecht, p331-342.
Berendsen J. K. C., Postma J. P. M., van Gunsteren W. F., DiNola A. and Haak J. R. (1984). “Molecular dynamics with coupling to an external bath,” J. Chem. Phys., vol. 81, p3684-3690.
Carravetta V. and Clementi E. (1984). “Water-water interaction potential: An approximation of electron correlation contribution by a functional of the SCF density matrix,” J. Chem. Phys., vol. 81, p2646-2651.
Cengel Y. A. and Boles M. A., “Thermodynamics an engineering approach,” Third Edition, p904-908, The McGraw-Hill Companies, 1998.
Chen W. L., Twu M. C. and Pan Chin (2002). “Gas-liquid two-phase flow in miscro channels, ”Int. J. Multiphase Flow, vol. 28, p1235-1247.
Dou Y., Zhigilei L. V., Winograd N. and Garrison B. J. (2001). “Explosive boiling of water films adjacent to heated surface: A Microscopic Description,” J. Phys. Chem. A, vol. 105, No. 12, p2748-2755.
Haile J. M., “Molecular Dynamics Simulation. Elementary Methods,” John Wiley & Sons, New York, 1992.
Hoover W. G.. (1985). “Canonical dynamics: equilibrium phase-space distribution,” Phys. Rev. A., vol. 31, p1695-1697.
Jedlovszky P., Brodholt J. P., Bruni F., Ricci M. A., Soper A.K. and Vallauri R. (1998). “Analysis of the hydrogen-bonded structure of water from ambient to supercritical conditions,” J. Chem. Phys. vol. 108, p8528-8540.
Jorgensen W. L. and Jenson C. (1998). “Temperature dependence of TIP3P, SPC, and TIP4P water from NPT Monte Carlo simulation: Seeking temperatures of Maximum density,” J. Comput. Chem., Vol. 19, p1179-1186.
Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W. and Klein M. L. (1983). “Comparison of simple potential functions for simulating liquid water,” J. Chem. Phys., vol. 79, p926-935.
Kalinichev A. G.. and Bass J. D. (1997). “Hydrogen bonding in supercritical water 2. computer simulations,” J. Phys. Chem. A , vol. 101, p9720-9727.
Kandlikar S. G., Maruyama S., Steinke M. E. and Kimura T. (2001). “Measurement and molecular dynamics simulation of contact angle of water droplet on a platinum surface,” HTD (Am. Soc. Mech. Eng.) (Proc. ASME Heat Transfer Division 2001), vol. 369, no. 1, p343-348.
Kimura T. and Maruyama S., (2002). “Molecular dynamics simulation of water droplet in contact with platinum surface,” Proc. 12th Int. Heat Transfer Conf., p537-542.
Krynicki K., Green C. D. and Sawyer D. W. (1978). “Pressure and temperature dependence of self-diffusion in water,” Faraday. Discuss. Chem. Soc., vol. 66, p199-207.
Liew C. C., Inomata H. and Arai K. (1998). “Flexible molecular models for molecular dynamics study for near and supercritical water,” Fluid Phase Equilibria, vol. 144, p287-298.
Mahoney M. W. and Jorgensen W. L. (2000). “A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions,” J. Chem. Phys., vol. 112, p8910-8922.
Marek R. and Straub J., (2001). “Analysis of the evaporation coefficient and the condensation coefficient of water, ” Int. J. Heat Mass Transfer, vol. 44, p39-53.
Maruyama S. (2000). “Molecular dynamics method for microscale heat transfer,” vol. 2, Chap. 6, p189-226, Advances in Numerical Heat Transfer, W. J. Minkowycz and E. M. Sparrow (Eds), Taylor & Francis, New York, 2000.
Matsumoto M. (1998). “Molecular dynamics of fluid phase change,” Fluid Phase Equilibria, vol. 144, p307-314.
Matsumoto M., Salto S. and Ohmine L. (2002). “Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing,” Nature, vol. 416, p409-413.
Matsuoka O., Clementi E. and Yoshimine M. (1976). “CI study of the water dimer potential surface,” J. Chem. Phys., vol. 64, p1351-1361.
Metropolis N., Rosenbluth A. W., Rosenbluth M. N., Teller A. H. and Teller E. (1953).“Equation of state calculations by fast computing machines,”J. Chem. Phys., vol. 21, p1087-1092.
Nagayama G. and Tsuruta T. (2003). “A general expression for the condensation coefficient based on transition state theory and molecular dynamics simulation,” J. Chem. Phys., vol. 118, p1392-1399.
Nose’ S. (1984). “A unified formulation of the constant temperature molecular dynamics methods,” J. Chem. Phys., vol. 81, p511-519.
Parrinello M. and Rahman A. (1982). “Strain fluctuations and elastic constants,” J. Chem. Phys., vol. 76, p2662-2666.
Rahman A. (1964). “Correlations in the motion of atoms in liquid argon,” Phys. Rev., vol. 136, p405-411.
Rapaport D. C., “The Art of Molecular Dynamics Simulation,” Cambridge University Press, Cambridge, 1995.
Rivera J. L., Predota M. P., Chialvo A. A. and Cummings P. T. (2002). “Vapor-liquid equilibrium simulations of the SCPDP model of water,” Chem. Phys. Lett., vol. 357, p189-194.
Sadus R. J., “Molecular Simulation of Fluids Theory, Algorithm and Object-Orientation,” Elsevier Science, 1999.
Spohr E. (1989). “Computer simulation of the water/platinum interface,” J. Phys. Chem., vol. 93, p6171-6180.
Stillinger F. H. and Rahman A. (1974) “Molecular dynamics study of liquid water under high compression,” J. Chem. Phys., vol. 61, p4973-4980.
Tsuruta T., Tanaka H. and Masuoka T. (1999). “Condensation/evaporation coefficient and velocity distributions at liquid-vapor interface,” International Journal of Heat and Mass Transfer, vol. 42, p4107-4116.
Verlet L. (1967). “Computer 〝experiments〞on classical fluids. I. thermodynamical properties of Lennard-Jones molecules, ” Phys. Rev., vol. 159, p98-103.
Yasuoka K. and Matsumoto M. (1998). “Molecular dynamics simulation of homogeneous in supersaturated water vapor,”Fluid Phase Equilibria, vol. 144, p369-376.
Yasuoka K., Matsumoto M. and Kataoka Y. (1995). “Dynamics near a liquid surface mechanisms of evaporation and condensation,” Journal Molecular Liquids, vol. 65-66, P329-332.
Yi P., Poulikakos D., Walther J. and Yadigaroglu G. (2002). “Molecular dynamics simulation of vaporization of an ultra-thin liquid argon layer on a surface,” International Journal of Heat and Mass Transfer, vol. 45, p2087-2100.
Zakharov V. V., Brodskaya E. N. and Laaksonen A. (1998). “Surface properties of water clusters: a molecular dynamics study,” Mol. Phys., vol. 95, No. 2, p203-209.
Zhou J., Lu X. H., Wang Y. R. and Shi J. (1999). “Molecular Dynamics Simulation of Supercritical Water,” Acta Physico-Chimica Sinica, Vol. 15, No. 11, p1017-1022.
吳逸文, “以分子動力學模擬L-J(12-6)液體之均質成核沸騰和薄膜蒸發,” 國立清華大學工程與系統科學所碩士論文, 2002.
張西亞等人, “PC Cluster整體性課程研習營,”行政院國科會國家高速網路與計算中心, 2003.
潘欽, “沸騰熱傳與雙相流,”國立編譯館, 台灣, 2001.
鄭守成, “MPI平行計算程式設計,”行政院國科會國家高速網路與計算中心, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top