跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/27 12:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:馮士豪
研究生(外文):Shi-Hao Feng
論文名稱:多平行矽質微通道沸騰熱傳之探討
論文名稱(外文):A Study of Boiling Heat Transfer in Multi-Parallel Silicon-based Microchannels
指導教授:潘欽
指導教授(外文):Chin Pan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:128
中文關鍵詞:微通道沸騰熱傳微機電雙相流
外文關鍵詞:microchannelsboiling heat transferMEMStwo-phase flow
相關次數:
  • 被引用被引用:1
  • 點閱點閱:118
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
微通道沸騰熱傳是個有趣的工業應用與基礎研究課題且其現象與傳統尺度的通道有很大的差異。本研究採用除氣後的去離子水為工作流體,探討其在平行梯型矽質微通道內的流動沸騰。測試段利用微機電技術製作,於單晶片上蝕刻三或六條為通道,水力直徑分別為41.3和33.5μm。本研究的目的為探索多平行矽質微通道的沸騰熱傳與雙相流現象,包括氣泡成長機制、沸騰熱傳、雙相流動形態與雙相流不穩定現象。
透過高速攝影機可清楚地觀察到微通道內的流動型態,包含氣泡流、彈狀流、環狀流、逆向蒸氣流、乾化以及其他特殊的流動型態。本研究發現氣泡成長與時間大致呈現線性關係,而彈狀流氣泡成長則與時間成指數關係。雙相時的熱傳能力較單相佳,當微通道內產生雙相現象時,進口壓力會有振盪行為,其振盪振幅受到熱通率與質量通率的影響。
Flow boiling heat transfer in microchannels is of significant interest and it is for industrial applications and fundamental researches. This study investigates experimentally flow boiling of degassed, de-ionized water in multi-parallel, silicon based trapezoid microchannels, including three and six parallel microchannels that having hydraulic diameter of 41.3 and 33.5μm. The tested chips are fabricated by MEMS technology. The objective of this research is to explore the boiling heat transfer and two-phase flow in microchannels including bubble growth mechanism, boiling heat transfer, two-phase flow pattern and instability.

By employing a high-speed video-camera, bubbly flow, slug flow, annular flow, reversal vapor flow, dry out and other peculiar two-phase flow patterns are observed clearly in microchannels. The bubble grows rate is almost linearly by time and the bubble in slug flow grows exponentially with time. The heat transfer ability of two phase flow is prior to single phase flow. The fluctuation of inlet pressure is observed during two phase period and it depends on heat flux and mass flux.
參考文獻

1. Ghiaasiaan, S. M., Chedester, R. C., 2002, “Boiling incipience in microchannels,” Int. J. of Heat and Mass Transfer 45, pp. 4599-4606.
2. Hetsroni, G., Mosyak, A., Segal, Z., 2001, “Nonuniform Temperature Distribution in Electronic Devices Cooled by Flow in Parallel Micochannels,” IEEE Transactions on Components and Packing Technologies, Vol. 24, No. 1, pp. 16-23.
3. Hetsroni, G., Klein, D. Mosyak, Z., Pogrebnyak, E., 2003, “Convective boiling in parallel micro-channels,” Fist International Conference on Microchannels and Minichannels, pp. 59-67.
4. Inasaka, F., Nariai, T. Shimura, 1989, “Pressure drop in subcooled boiling in narrow tubes,” Heat Transfer-Jpn. Res. 18, pp. 70-82.
5. Jiang, L., Wong, M., Zohar, Y., 1999, “A micro-channel heat sink with integrated temperature sensors for phase transition study,”, IEEE, pp. 159-164.
6. Jiang, L., Wong, M., Zohar, Y., 2001, “Force Convection Boiling in Microchannel Heat Sink,” J. of Microelectromechanical Syste,, Vol, 10, No. 1, pp. 80-87.
7. Kandlikar, S. G., 2003, “Heat Transfer mechanisms during flow boiling in microchannels,” Fist Intternational Conference on Microchannels and Minichannels, pp. 33-46.
8. Kennedy, J. E., Roach Jr, G. M., Dowling, M. F., Abdel-Khalik, S. I., Ghiaasiaan, S. M., Jeter, S. M., Quereshi, Z. H., 2000, “The onset of flow insatability in uniformly heated horizontal microchannels,” ASME J. Heat Transfer 122, pp. 118-125.
9. Lee, M., Wong, Y. Y., Zohar, Y., 2002, “Size and shape effects on two-phase flow instabilities in microchannels,” IEEE, pp. 28-31.
10. Madou, M. J., 2002, “Fundamentals of MicroFabrication”.
11. Mert, R., Welin, Groll, 1996, “Experimental investigation of boiling heat transfer in narrow channels,” Calore Technologia 14(2) 47-57.
12. Peng, X. F., Wang, B. X., 1995, “Experimental investigation of heat transfer in flat plates with rectangular microchannels,” Int. J. Heat Mass Transfer, Vol. 38, No. 1, pp. 127-137.
13. Peng, X. F., Hu, H. Y., Wang, B. X., 1998, “Boiling nucleation during liquid flow in microchannels,” Int. J. Heat Transfer, Vol. 41, No. 1, pp. 101-106.
14. Qu, W., Mala, G. M. Li., D., 2000, “Pressure-driven water flows in trapezoidal silicon microchannels,” Int. J. of Heat and Mass transfer 43, 353-364.
15. Qu, W., Mudawar, I., 2002, “Thermal design methodology for high-heat flux single-phase and two-phase micro-channel heast sinks,” IEEE, pp. 347-359.
16. Steinke, M. E., Kandlikar, S. G., 2003, “Flow boiling and pressure drop in parallel flow microchannels,” Fist Intternational Conference on Microchannels and Minichannels, pp. 567-579.
17. Steinke, M. E., Kandlikar S.G., 2004, “Control and effect of dissolved air in water during flow boiling in microchannels,” Int. J. of Heat and Mass Transfer 47, 1925-1935.
18. Tuckerman, D. B., Pease, R. F. W., 1981, “High-Performance heat sinking for VLSI,” IEEE Electronic Device letters, Vol EDL-2 (5), No. 4, pp. 126-129.
19. Wu, H. Y., Cheng, P., 2003, “Friction factors in smooth trapezoidal silicon microchannels with different aspect ratios,” Int. J. of Heat and Mass Transfer 46, 2519-2525.
20. Wu, H. Y., Cheng, P., 2003, “Visualization and measurements of periodic boiling in silicon microchannels,” Int. J. of Heat and Mass Transfer 46, 2519-2525.
21. Wu, H. Y., Cheng, P., 2003, “Two large-amplitude/long period oscillating boiling modes in silicon microchannels,” Fist Intternational Conference on Microchannels and Minichannels, pp. 2519-2525.
22. 李柏蒼,「單管矽質微通道沸騰熱傳之探討」,碩士論文,清華大學工程與系統科學研究所,指導教授潘欽博士,民國九十二年。
23. 李懷揚,「雙管矽質微通道沸騰熱傳之探討」,碩士論文,清華大學工程與系統科學研究所,指導教授潘欽博士,民國九十二年。
24. 電腦世界雜誌 2003年第24期。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊