跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/01 11:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王炳琨
研究生(外文):Wang Ping-Kun
論文名稱:不同HfOxNy/SiO2堆疊穿隧介電層對快閃記憶體操作特性之影響
論文名稱(外文):Flash Memories with Different HfOxNy/SiO2 Stack Tunnel Dielectric
指導教授:王天戈張廖貴術
指導教授(外文):Tien-Ko WangKuei-Shu Chang-Liao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:117
中文關鍵詞:快閃記憶體堆疊穿隧介電層
外文關鍵詞:Flash MemoryStack Tunnel DielectricHfOxNy/SiO2
相關次數:
  • 被引用被引用:2
  • 點閱點閱:199
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
快閃記憶體元件在經過多次的寫入/擦拭操作之後,主要的元件傷害都集中在熱電子穿隧閘極氧化層的過程中發生。當元件使用愈久,其閘極氧化層的傷害便愈嚴重;如此一來,將使得電子無法穿隧閘極氧化層到達懸浮閘極進行資料的儲存,也將使得快閃記憶體的電荷保持能力大幅衰減,導致元件無法使用。因此,本篇論文探討以單層/堆疊閘極結構做為快閃記憶體中的穿隧閘極介電層,再配合不同的快速熱退火溫度條件,對於快閃記憶體元件電特性之影響,做一系統性的探討。
由實驗結果可發現,堆疊結構不論在寫入或是擦拭方面,其穿隧電流值皆比單層結構大,因此,堆疊結構有較快的寫入及擦拭速度;在可靠度測試中,實驗結果顯示出堆疊結構不論在電荷保持、耐力表現、讀取干擾方面,其整體表現皆比單層結構優越。而在同樣是堆疊樣本當中,我們發現當墊氧化層厚度愈薄,跨於閘極氧化層的電場便愈大,因此可得到較大的穿隧電流值,所以墊氧化層較薄的元件擁有較優越的寫入/擦拭特性;而墊氧化層厚度較厚的樣本,則是在高電場下的電荷保持特性,表現較為出色。在退火溫度方面,由實驗結果發現當退火溫度在850℃之下,材料擁有最佳的特性,因此有較佳的元件特性。整體而言,我們認為OH15/60-850為最佳的元件參數。
目 錄
摘要……………………………………………………………I
目錄……………………………………………………………II
表目錄…………………………………………………………V
圖目錄…………………………………………………………VI
第一章 序論……………………………………………………………1
1-1前言…………………………………………………………………1
1-2研究目的……………………………………………………………4
1-3高介電常數材料的選擇及介紹…………………………………5
1-3-1 HfO2材料介紹………………………………………………6
1-3-2 HfOxNy材料介紹……………………………………………7
1-3-3 HfOxNy與HfO2特性比較…………………………………7
1-4論文回顧………………………………………………………………8
1-4-1 High-k應用在快閃記憶體中的穿隧閘極介電層……………9
1-4-2 High-k應用在快閃記憶體中的內多晶矽介電層……………10
1-5各章摘要……………………………………………………12
第二章 快閃記憶體元件操作方法…………………………………20
2-1 快閃記憶體元件結構………………………………………………20
2-2 寫入與擦拭方法………………………………………………22
2-2-1 通道熱電子注入寫入 ………………………………………22
2-2-2 F-N穿隧寫入……………………………………………23
2-2-3 F-N穿隧擦拭……………………………………………23
2-3 耐力…………………………………………………………24
2-4 過度擦拭……………………………………………………25
2-5 干擾…………………………………………………………27
2-6 電荷保持……………………………………………………28
第三章 快閃記憶體元件製程…………………………………43
3-1 元件製程……………………………………………………43
3-1-1 晶片刻號及零層(Alignment Mark)曝光……………………43
3-1-2定義主動區(Active Region Definition)……………………44
3-1-3 LOCOS Formation and KOOI Effect………………………45
3-1-4 閘極介電層的沈積及退火(Annealing)處理…………………46
3-1-5 Floating Gate, IPD and Control Gate Deposition………47
3-1-6 Poly Gate Definition and Source,Drain,Body Implant…48
3-1-7 Contact Holes and Metal Layer……………………………49
3-2 材料分析……………………………………………………50
第四章 不同HfOxNy/SiO2組成比做為快閃記憶體之穿隧介電
層電特性之影響…………………………………………60
4-1 F-N穿隧理論基礎…………………………………………………60
4-2 結果與討論…………………………………………………………62
4-2-1快閃記憶體之寫入與擦拭偏壓決定……………………………62
4-2-2 各元件寫入/擦拭速度比較……………………………………64
4-2-3快閃記憶體之可靠度分析………………………………………65
4-3結論…………………………………………………………………69
第五章 不同退火溫度對穿隧介電層電特性之影響……95
5-1 研究緣由與目的…………………………………………………95
5-2 結果與討論…………………………………………………………96
5-2-1 各元件寫入/擦拭速度比較……………………………………96
5-2-2快閃記憶體之可靠度分析………………………………………98
5-3結論…………………………………………………………………100
第六章 結論與建議………………………………………112
6-1結論…………………………………………………………………112
6-2建議…………………………………………………………………113
參考文獻……………………………………………………114
參考文獻
[1] William D.Brown ,Joe E.Brewer,”Nonvolatile Semiconductor Memory Technology”,The institute of Electrical and Electronics Engineers Inc,1997.
[2] Stefan Lai, ”Tunnel Oxide and ETOX Flash scaling Limitation”, Intel Non Volatile Memory Technology conference, 1998.
[3] Jong Jin Lee,Xuguang Wang,Weiping Bai,Nan Lu,and Dim-Lee, ”Theoretical and Experimental Investigation of Si Nanocrystal Memory Device With HfO2 High-k Tunneling Dielectric”, IEEE Transactions on Electron Devices ,Vol. 50,NO 10, p.2067-2072, 2003.
[4] Akira Toriumi,Advanced Semiconductor Research Center, “Reliability Perspective of High-k Gate Dielectrics –What is Different from SiO2?-”, 2002 7th International Symposium on Plasma-and-Process-Induced Damage,p4-9,2002.
[5] 王國在,”高介電常數閘極金氧半電容之電特性與熱穩定性研究”,國立清華大學工程與系統科學研究所,p2-p4,2003.
[6] C.H. Choi, T.S. Jeon, R. Clark, and D.L. Kwong, “Electrical Properties Thermal Stability of CVD HfOxNy Gate Dielectric With Poly-Si Gate Electrode”, IEEE Electron Devices Letter, VOL. 24,NO.4, APRIL,2003.
[7] B. Govoreanu, P. Blomme, M. Rosmeulen, J. Van Houdt and K. De Meyer, “VARIOT: A Novel Multilayer Tunnel Barrier Concept for Low-Voltage Nonvolatile Memory Devices”, IEEE Electron Devices Letter, VOL. 24,NO.2, FEBRUARY,p99-101,2003.
[8] B. Govoreanu, P. Blomme, J. Van Houdt and K. De Meyer, “Simulation of Nanofloating Gate Memory with High-k Stacked Dielectrics”, IEEE Electron Devices Letter, p299-302,2003.
[9] W.-H.Lee,J.T.Clemens,”A Novel High-k Inter-Poly Dielectric(IPD),Al2O3 for Low Voltage/High Speed Flash Memories:Erasing in msecs at 3.3V”,Symposium on VLSI Technology Digest of Technical Papers,p117-118,1997.
[10] Paolo cappelletti,Carla Golla,Piero Olivo,Enrico Zanoni,“FLASH MEMORIES”, KAP,p42-47,1999.
[11] T.P.Ma,X.W. Wang, X Guo, “Demonstration of a Flash Memory Cell with 55Å EOT Silicon Nitride Tunnel Dielectric” ,IEEE Electron Device Letter, Vol. 01, p.138, 2001.
[12] Mori, N. Arai, Y. Kaneko and K. Yoshikawa, “Polyoxide Thinning Limitation and Superior ONO Interpoly Dielectric for Nonvolatile Memory Device” ,IEEE Transactions on Electron Device , Vol. 38,NO.2,FEB, 1991.
[13] Mori, E. Sakagami, H. Araki, Y. Kaneko, K. Narita, Y.Ohshima, N. Arai and K. Yoshikawa, ”ONO Inter-poly Dielectric Scaling for Nonvolatile Memory Applications”, IEEE Transactions on Electron Device ,Vol.38,NO.2,FEB, 1991.
[14] Mori, YY. Araki, M.Sato, H. Tsunoda, E. Kamiya, K. Yoshikawa,N. Arai and E. Sakagami, ”Thickness Scaling Limitation Factors of ONO Interpoly Dielectric for Nonvolatile Memory Devices”, IEEE Transactions on Electron Device ,Vol.1,p47, 1996.
[15] Sze,”Physics of Semiconductor Devices”, John Wiley & Sons, 1981.
[16] K.T. San, C. Kaya, T.P Ma,”Effect of Erase Source Bias on Flash EPROM Device Reliability”, IEEE Transactions on Electron Device,Vol.42,Issue:1,p150,Jan. 1995.
[17] Ong, A. Fazio, N. Mielke, S. Pan, N. Righos, G. Atwood and S. Lai,” Erratic Erase in ETOX Flash Memory Array”, VLSI Symp. On Tech. P.83, 1993.
[18]Cappeletti, R. Bez, D. Cantarelli and L. Fratin,” Failure Mechanisms of Flash Cell in Program/Erase Cycling”, International Electron Devices Meeting, P.291, 1994.
[19]Verma and N. Mielke,” Reliability Performance of ETOX Based Flash Memory”, International Reliability Physics Symp, P.158, 1998.
[20]Haddad, C. Chang, B. Swaminathan and J. Lien,” Degradation Due to Hole Trapping in Flash Memory Cells”, IEEE Electron Dev. Lett., Vol.10, No3, P.117, Mar. 1989.
[21] Adam Brand , Ken Wu, San Pan and David Chin,” Novel Read Distub Failure Mechanism Induced by Flash Cycling”, International Reliability Physics Symp, , P.127, 1993.
[22] Pan, K. Wu, P. Freiberger, A.Chatterjee, G. Sery,” A Scaling Methodology for Oxide-Nitride-Oxide Interpoly Dielectric for EPROM Application”, IEEE Trans. on Electron Dev. Vol.37, No.6, P.1439, Jun. 1990.
[23] Pan, K. Wu , D. Chin, G. Sery, J. Kiely,” High-Temperature Charge Loss Mechanism in Floating-Gate EPROM with an Oxide-Nitride-Oxide(ONO) Interpoly Stacked Dielectric”,IEEE Electron Dev.Lett., Vol.12,No.9,P.506,Sep.1991.
[24] Neal R.Mielke,” New EPROM Data-Loss Mechanisms”, IEEE International Reliability Physics Symp, P.106, 1983.
[25] 張俊彥,鄭晃忠,”積體電路製程及設備技術手冊”,中華民國電子材料與元件協會,p188,1997.
[26] 汪建民,”材料分析”,中國材料科學協會,p77,2001.
[27] 莊達人主編, “VLSI製造技術”, 高立圖書有限公司, 2002五版修訂
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top