跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/05 15:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳奇隆
研究生(外文):Chi-Lung Wu
論文名稱:先進微影材料之光學特性研究
論文名稱(外文):Study of Optical Characteristics of Materials for Advanced Lithography
指導教授:張廖貴術
指導教授(外文):Kuei-Shu Chang-Liao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:102
中文關鍵詞:微影真空紫外光SU-8灰階光罩CNT
外文關鍵詞:lithographyVacuum UlravioletSU-8gray-scale maskCNT
相關次數:
  • 被引用被引用:3
  • 點閱點閱:304
  • 評分評分:
  • 下載下載:70
  • 收藏至我的研究室書目清單書目收藏:0
論文摘要

本論文針對下世代真空紫外光微影術-121、126 nm以及157 nm真空紫外光微影術進行材料光學特性的研究,先以真空紫外光光譜儀量測多角度入射的反射率,再使用thin film model求解材料的光學常數。
接著探討一些Low-K材料,包括HSQ和porous MSQ以及介電材料,包括二氧化矽薄膜和氮氧化矽薄膜。並且在成長氮氧化矽薄膜時,試著改變其成份氣體的流量比,探討其光學常數隨氣體流量比的變化情形。
將已分析過其光學特性的材料應用於121、126以及157 nm真空紫外光微影術中的光阻、底部抗反射層(Bottom Antireflective Coating)和衰減式相位移光罩(Attenuated Phase Shifting Mask)製作上,並且模擬其在使用上的效果以及優劣。
另外,本論文也會探討SU-8的光學特性,以及SU-8應用在灰階光罩中,在曝光波長為193 nm(ArF)、248 nm(KrF)下 的適用性。另外,我們在SU-8中加入奈米碳管(Carbon Nanotube,CNT),探討SU-8加入奈米碳管(CNT)之後的光學特性以及奈米碳管(CNT)的濃度和曝光劑量等種種條件對於SU-8+CNT光學特性的影響。
Abstract

We propose a new method of solving the optical constants for Vacuum Ultraviolet lithography. We measure the reflectance of multi-angles incidence and then use the thin film model to solve the optical constants of materials. We discuss the optical characteristics of low-K and dielectric materials include Hydrogen silsesquioxane, Methylsesquioxane and silicon oxynitride films. And we vary the gas flow ratio to tune the optical constants of silicon oxynitride films. Then we apply the materials that analyzed to resist, bottom antireflective coating and attenuated phase shifting mask of Vacuum Ultraviolet lithography.
The other point, we propose a new method that using SU-8 polymer to fabricate gray-scale mask. SU-8 polymer has smei-absorption property and usually used in semiconductor process. This method has many advantages than conventional method. So we discuss the optical property of epoxy based SU-8 polymer and application in gray-scale mask. In addition to SU-8, we add the Carbon Nanotube (CNT) in SU-8 to enhance the absorption because the absorption of SU-8 is too weak at 365 nm (I-line) or 436 nm (G-line) exposure wavelength. Then we discuss the optical property and application of SU-8 after adding CNT. We find that exposure dosage would affect the optical constants of SU-8+CNT.
目錄
摘要-------------------------------------------------------------------------------I
誌謝------------------------------------------------------------------------------II
目錄------------------------------------------------------------------------------III
表目錄--------------------------------------------------------------------------XIV
圖目錄--------------------------------------------------------------------------XV
第一章 序論---------------------------------------------------------------------1
1.1 前言---------------------------------------------------------------1
1.2 研究動機與目的------------------------------------------------3
1.3 研究內容---------------------------------------------------------5
第二章 理論基礎--------------------------------------------------------------7
2.1 光學微影曝光系統---------------------------------------------7
2.1.1 系統架構--------------------------------------------------7
2.1.2 光源的同調性--------------------------------------------8
2.1.3 偏軸照射技術原理--------------------------------------9
2.1.4 成像理論-------------------------------------------------11
2.1.5 高數值孔徑透鏡----------------------------------------12
2.1.6 光阻輪廓分析-------------------------------------------13
2.2 微影製程技術--------------------------------------------------16
2.2.1 塗底--------------------------------------------------------17
2.2.2 光阻塗佈--------------------------------------------------17
2.2.3 軟烤--------------------------------------------------------17
2.2.4 曝光--------------------------------------------------------17
2.2.5 曝後烤-----------------------------------------------------18
2.2.6 顯影--------------------------------------------------------18
2.2.7 硬烤--------------------------------------------------------18
2.3 反射光對光阻的影響------------------------------------------19
2.3.1 駐波效應--------------------------------------------------19
2.3.1.1 反射率駐波圖-----------------------------------22
2.3.1.2 清晰曝光劑量駐波圖--------------------------22
2.3.2 凹缺效應--------------------------------------------------24
2.4 抗反射層理論---------------------------------------------------25
2.4.1 多層光學薄膜理論---------------------------------------26
2.4.2 多層底部抗反射層---------------------------------------28
2.4.3 抗反射層材料---------------------------------------------29
第三章 真空紫外光光學常數求解方法-----------------------------------31
3.1 分析方法---------------------------------------------------------32
3.2 容忍度分析與討論---------------------------------------------34
3.2.1 反射率容忍度分析-------------------------------------34
3.2.2 厚度容忍度分析----------------------------------------37
3.2.3 入射角容忍度分析-------------------------------------40
3.3 表面粗糙度對反射率之影響--------------------------------43
3.4 不同材料的求解結果-----------------------------------------45
3.5 結論--------------------------------------------------------------48
第四章 材料光學特性的探討---------------------------------------------48
4.1 實驗儀器介紹--------------------------------------------------48
4.2 以求解方法分析材料光學特性-----------------------------49
4.2.1 以二氧化矽驗証121或126 nm波長的求解方法---------------------------------------------------------------------50
4.2.2 分析Porous MSQ與HSQ 在126 nm之光學特性---------------------------------------------------------------------52
4.2.3 分析氮氧化矽在126 nm之光學特性---------------58
4.3 在光學微影製程中之應用-----------------------------------62
4.3.1 HSQ以及porous MSQ在光阻及介電材料上的應用---------------------------------------------------------------------62
4.3.2 氮氧化矽在抗反射層上的應用----------------------62
4.3.3 氮氧化矽在相位移光罩上的應用-------------------67
4.4 結論--------------------------------------------------------------68
第五章 以SU-8的光學特性應用在灰階光罩的製作------------------69
5.1 背景介紹-------------------------------------------------------75
5.2 研究動機-------------------------------------------------------75
5.3 以SU-8結合半導體製程來製作灰階光罩--------------78
5.4 以混合CNT來增加SU-8的吸收程度-------------------82
5.4.1 SU-8混合CNT後的光學特性----------------------82
5.4.2 SU-8混合CNT後之鍵結分析----------------------85
5.4.3 CNT濃度對光學特性之影響------------------------90
5.4.4 曝光劑量對SU-8+CNT光學特性之影響---------92
5.5 結論--------------------------------------------------------------94
第六章 結論--------------------------------------------------------------------95
參考文獻

[1] Semiconductor Industry Association, “International Technology Roadmap for Semiconductor 2003 Updated, (SIA Publication, 2003)”
[2] K. Suzuki, S. Matsui et al., “Sub-Half-Micron Lithography for ULSIs” (Cambridge University, New York Publication 2000)
[3] C. H. Lin, L. A. Wang and H. L. Chen, “Optimized Bilayer Hexamethyl-Disiloxane Film as Bottom Antireflective Coating Both KrF and ArFLithographies” J. Vac. Sci. Technol. B, Vol.18, No.6, pp.3323-3327, 2000
[4] C. H. Lin and L. A. Wang, “Feasibility of Utilizing Hexamethyl-Disiloxane Film as a Bottom Antireflective Coating for 157 nm Lithography” J. Vac. Sci. Technol. B, Vol.19, No.6, pp.2357-2361, 2001
[5] T. M. Bloomstein, M. Rothschild, R. R. Kunz, D. E. Hardy, R. B. Googman and S. T. Palmacci, “Critical Issues in 157 nm Lithography” J. Vac. Sci. Technol. B, Vol.16, No.6, pp.3154-3157, 1998
[6] 邱燦賓,”抗反射層應用於微影製程之簡介”,奈米通訊,第四卷,第三期,頁25-31,1997
[7] T. Gocho, T. Ogawa, M. Muroyama and T. I. Sato, “Chemical Vapor Deposition of Anti-reflective Layer Film for Excimer Laser Lithography” J. J. Appl. Phys., Vol.33, pp.486-490, 1994
[8] Y. Tani, H. Mito, Y. Okuda, Y. Todokoro, T. Tatsuta, M. Sawai, O. Tsuji, “Optimization of Amorphous Carbon-Deposited Antireflective Layer for Advanced Lithography” J. J. Appl. Phys., Vol.32, pp.5909-5913, 1993
[9] L. A. Wang and H. L. Chen, “A Novel Bottom Antireflective Coating Working for Both KrF and ArF Excimer Laser Lithography” Microelectron Eng. 53, pp.141-144, 2000
[10] M. Xu and T. M. Ko, “Double-Layer Inorganic Antireflective System for KrF Lithography” J. Vac. Sci. Technol. B, Vol.18, No.1, pp.127-135, 2000
[11] T. C. Paulick,” Inversion of normal-incidence (R, T) Measurements to obtain N + IK For Thin Films” Appl. Optics, 25(4) 562, 1986
[12] N.V. Edwards, Annual APS March meeting 2002.
[13] R. H. French, Optical Microlithography XIII, SPIE 4000 1491, 2000
[14] V. Liberman, M. Rothschild, P. G. Murphy, and S. T. Palmacci, “Prospects for Photolithography at 121 nm”, J. Vac. Sci. Technol., B20 (6), 2567, 2002
[15] Jianxun Yan, Anatoly Bourov, Bruce W. Smith, “Optical Lithography at a 126nm Wavelength”, J. Vac. Sci. Technol., B20(6), 2574, 2002
[16] Hoyoung Kang, Ashraf EI-Dakrouri, Mounir Laroussi, and Mool C. Gupta, “121.6 nm Radiation Source for Advanced Lithography”, Proc. SPIE, Vol.4343, 2001
[17] 張仲興,�撩謢X應用各種光學方法來改善積體電路光學微影製程之模擬與研究」,國立交通大學,光電工程研究所,碩士論文,1997
[18] Bruce W. Smith, ”Optics for Photolithography” Rochester Institute of Technology, Rochester, New York, 2000
[19] Larry F. Thompson, C. Grant Willson et al., “Introduction to Microlithography” American Chemical Society, Washington publication, 1994
[20] C. A. Mack, “Optimum Stepper Performance Through Image Manipulation” KTI Micro-electronics Seminar, Proc., pp.209, 1989
[21] C. A. Mack, “Algorithm for Optimizing Stepper Performance Through Image Manipulation” Optical/Laser Microlithography III, Proc., SPIE Vol.1264, pp.71, 1990
[22] C. A. Mack, ”Inside Prolith” Finle Technologies, Texas publication, 1997
[23] Heinrich Kirchauer, Institute for Microelectronics, TU Vienna, published at http://www.iue.tuwien.ac.at/publications/PhD%20Theses/kirchauer/node41.html
[24] D. F. Ilten and K. V. Patel, “Standing Wave Effects in Photoresist Exposure” Image Technology, pp.9, 1971
[25] G. S. Hwang, K. P. Giapis, “On the origin of the notching effect during etching in uniform high density plasmas” J. Vac. Sci. Technol., Vol.15, No. 1, pp. 70, 1997
[26] T. A. Brunner et al., ”High NA swing curve effects” SPIE, Vol.4346, pp.1050, 2001
[27] C. A. Mack and C-B. Juang, “Comparison of Scalar and Vector Modeling of Image Formation in Photoresist” Optical/Laser Microlithography VIII, Proc., SPIE Vol. 2440, 1995
[28] C. A. Mack, “Analytical expression for the standing wave intensity in photoresist” Applied Optics, 25, pp. 1958, 1986
[29] Han Ku Cho,” Current Lithography Technology and Future Prospect” Process Development Team Semiconductor R & D, Samsung Inc., published at http://seraphim.snu.ac.kr /upload /samsung/2001/ lithography.pdf
[30] H. A. Macleod, ”Thin-film optical filters” McGraw-Hill, New York publication, 2001
[31] 李正中,�撙■丰�學與鍍膜技術」,藝軒圖書出版社,1999
[32] Se-Jin Choi et al., ”Improved Lithographic Performance of 193nm-Photoresists Based on Cycloolefin / Maleic Anhydride Copolymer by Employing Mixed PAGs” SPIE, Vol.4346, pp.94, 2001
[33] E. J. Walker, ”Reduction of Photoresist Standing-Wave Effects by Post Exposure Bake” IEEE Trans. Electron Devices., Vol,ED-22,No.7, pp464, 1975
[34] R. A. Cirelli, G. R. Weber, A. Kornblit, R. M. Baker, F. P. Kkemens, and J. Demarco, “A Multi-layer Inorganic Antireflective System for Use in 248 nm Deep Ultraviolet Lithographey” J. Vac. Sci. Technology. B14 (6), 4229, 1996
[35] Tanaka, N. Asai, and S. I. Uchino, “A Novel Antireflection Method With Gradient Photoabsorption for Optical Lithography”, Proc. SPIE 2726, pp. 573-582, 1996
[36] L. A. Wang, H. L. Chen “Multi-Layer Hexamethyldisiloxane Film as Bottom Antireflective Coating for ArF Lithography” J. Vac. Sci. Technol. B 17(6), pp. 2772, 1999
[37] Q. Y. Lin, A. Cheng, J. Sudijono, C. Lin, “Dual Layer Inorganic SiON Bottom ARC for 0.25μm DUV Hard Mask Applications” Proc. of SPIE, Vol. 3678, pp.186, 1999
[38] S. Ding, W. Kang, H. Tanaka, S. Dixit et al. “Optimization of Bottom Antireflective Coating Materials for Dual Damascene Process” Proc. of SPIE, Vol. 3999, pp.910, 2000
[39] Cher-Huan Tan, et al.,” Organic BARC Process Evaluation for Via First Dual Damascene Patterning” SPIE, Vol.4346, pp.804, 2001
[40] S. Nakaoka, H. Watanabe, and Y. Okuda, “Comparison of CD Variation Between Organic and Inorganic Bottom Anti-reflective Coating on Topographic Substrates” Proc. of SPIE, Vol. 3679, pp.932, 1999
[41] 莊達人,�墟LSI製造技術」,高立圖書公司,1994
[42] P. T. Liu, T. C. Chang, K. C. Hsu, T. Y. Tseng, L. M. Chen, C. J. Wang, and S. M. Sze,” Characterization of Porous Silicate for Ultra-low K Dielectric Application” Thin Solid Film, 414, pp.1-6, 2002
[43] 張鼎張,劉柏村,”NDL在無機類低介電係數材質的研發簡介”,奈米通訊,第五卷,第四期
[44] 范萬達,�憧�學微影中漸變式底部抗反射層之研究」,國立台北科技大學,光電技術研究所,碩士論文,2002
[45] W. Henschel, Y. M. Georgiev, and H. Kurz, “Study of a high contrast process for hydrogen silsesquioxane as a negative tone electron beam resist” J. Vac. Sci. chnol., B21(5), 2018, 2003
[46] F. D. Lai, C. M. Chang, L. A. Wang, and T. S. Yih,” Ultrathin TiO2 amorphous films for high transmittance APSM blanks at 157 and 193 nm wavelength simultaneously” J. Vac. Sci. Technol., B21, 3062, 2003
[47] Oppliger, Y. et al., “One-step 3D Shaping Using a Gray-Tone Mask for Optical & Microelectric Applications” Microelectronic Engineering, Vol.23, p.449-454, 1994
[48] Daschner, Walter et al., “Fabrication of Diffractive Optical Elements using a Single Optical Exposure with a Gray Level Mask” J. Vac. Sci. Technol. B, Vol.13(6), Nov/Dec, p.2729-2731, 1995
[49] Ridge, Nancy, “HEBS-Glass Photomask Blanks” User’s Manual(Canyon Materials Inc.), CMI Product Information no.96-01, p.1-15
[50] Christopher M. Waits, Reza Ghodssi, Matthew H. Ervin and Madan Dubey, “MEMS-based Gray-Scale Lithography” International Semiconductor Device Research Symposium (ISDRS), December 5-7, 2001, Washington D. C.
[51] W. H Wong and E. Y. B. Pun, “SU8C Resist for Electron Beam Lithography” Proceedings of SPIE, Vol.4345, pp.873-880, 2001
[52] 陳宣克,�撕q子束微影製作三維非平面微結構及結構表面改質」,國立中央大學,化學工程與材料工程研究所,碩士論文,2003
[53] Published at http://www.cnm.es/projects/microdets/su8.htm
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top