跳到主要內容

臺灣博碩士論文加值系統

(3.235.60.144) 您好!臺灣時間:2021/07/23 23:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳泰鋒
研究生(外文):Tai-Feng Wu
論文名稱:氣泡式噴墨頭噴墨過程之數值模擬
論文名稱(外文):Numerical Simulation of Bubble Inkjet Processes
指導教授:潘欽
指導教授(外文):Chin Pan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:74
中文關鍵詞:微型氣泡CFD-ACE(U)入口邊界速度噴墨過程雷利方程式氣泡內壓力關係式液珠行為
外文關鍵詞:microbubbleCFD-ACE(U)blow-suction methodejection processesthe extended Rayleigh equationAsai's pressure approximationdroplet behavior
相關次數:
  • 被引用被引用:1
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討高熱通率下微型氣泡之成長過程與氣泡式噴墨頭噴墨過程之模擬。
其中, 微型氣泡之半徑隨時間的變化可由雷利方程式( extended Rayleigh
equation),配合Asai 建議之氣泡內壓力關係式(Asai, 1991)得到,並利用商用軟
體CFD-ACE(U),藉由入口邊界速度的變化,發展一種簡單之模擬氣泡成長與收縮
的方法。最後,本研究亦探討噴墨室與噴嘴之尺寸、加熱功率及溫度對噴墨過程與
液珠行為之影響。
根據模擬之結果,在氣泡成長前半段,由雷利方程式得到之微型氣泡半徑變化
與文獻中實驗值有相當好的吻合。而由入口速度邊界變化得到之模擬氣泡,也可達
到預期的體積變化速率。此外,利用此模擬氣泡模擬之噴墨過程顯示,噴出液珠之
速度會隨著噴孔面積與噴墨室的加大而變小,而液珠之體積與噴孔大小有正相關之
關係。然而,液體溫度的變化,對於液珠行為並無太大的影響。
In the present study, the variation of microbble radius under a high heat flux is
investigated and a simulated bubble is developed by the commercial software, CFD-ACE
(U), using a blow-suction method. The radius of microbubble is calculated by the
extended Rayleigh equation with Asai's pressure approximation(Asai, 1991) and the
results was fitted by the cubic spline method to be the input data of the simulated bubble.
Finally, a series of studies of the droplet behavior are conducted with various different
sizes of ink chambers and nozzles. Moreover the temperature effect was also discussed.
The results demonstrate that a good agreement in the early stage of bubble expansion
between the extended Rayleigh equation and the experimental data. This simulated bubble
volume is nearly coincided with the input bubble volume. Based on the results from the
simulation, the droplet velocity is found to decrease with an increase nozzle size and
chamber height, and the droplet volume increases with increase of the nozzle size.
However, the temperature effect is insignificant.
ABSTRACT Ⅱ
ACKNOWLEDGEMENT Ⅲ
CONTENTS Ⅳ
LIST OF TABLES Ⅵ
LIST OF FIGURES Ⅶ
CHAPTER 1 INTRODUCTION
1.1 Motivation 1
1.2 Literature Review 1
1.2.1 Microheater Experiments 1
1.2.2 Bubble Nucleation Simulation 4
1.3 Objectives and Methods 7
1.4 Scope of the Thesis 8
CHAPTER 2 THEORETICAL ANALYSIS OF BUBBLE NUCLEATION
2.1 Nucleation Theory 9
2.2 Semi-Infinite Heat Conduction Model 12
2.3 Bubble Formation Approach 14
2.3.1 Bubbble Dynamics 14
2.3.2 Asai's Bubble Pressure Approach 16
CHAPTER 3 NUMERICAL AND CFD SIMULATION
3.1 CFD-ACE(U) Introduction 19
3.1.1 Staggered Grids System 19
3.1.2 SIMPLEC Method 22
3.1.3 VOF Method 22
3.2 Heating Process Simulation 24
3.3 Solving the extended Rayleigh equation with Asai's pressure Model 27
3.3.1 Rung-Kutta Method 27
3.3.2 Extended Rayleigh Equation with Asai's pressure model 28
3.4 Simulated Bubble Formation 29
3.4.1 Bubble Formation with an Inlet Boundary Condition 30
3.4.2 Cubic Spline Method 33
3.5 Jetting Simulation 35
CHAPTER 4 RESULTS AND DISCUSSION
4.1 Temperature Distribution around the Heater before Boiling 40
4.2 Bubble Radius Fitting 44
4.3 Simulated Bubble Formation 46
4.4 Jetting Process Simulation of an Inkjet Head 56
4.4.1 Geometry Effect 56
4.4.2 Heating Power and Temperature Effect 68
CHAPTER 5 CONCLUTION AND RECOMMENDATION 71
CHAPTER 6 REFERENCES 73
Asai, A., Hara, T., Endo, I., 1987, “One-Dimensional Model of Bubble Growth and
Liquid Flow in Bubble Jet Printers,” Japanese J. of Applied Physics, Vol.26, No.
10, pp1794-1801
Asai, A., 1989, “Application of the Nucleation Theory to the Design of Bubble Jet
Printers,” Japanese J. of Applied Physics, Vol.28, No. 5, pp909-915
Asai, A., 1991, “Bubble Dynamics in Boiling Under High Heat Flux Pulse Heating,” J.
Heat Trans., Vol.113, pp973-979
Asai, A., 1992, “Three-Dimensional Calculation of Bubble Growth and Drop Ejection in
a Bubble Jet Printer,” Transactions of the ASME, Vol.114, pp638-641
Avedisian, C. T., Osborne, W. S., Mcleod, F. D., Curley, C. M., 1999, “Measuring bubble
nucleation temperature on the surface of a rapidly heated thermal ink-jet heater
immersed in a pool of water,” Proc. R. Soc. Lond. A, Vol.455, pp3875-3899
Bankoff, S. G., 1957, “Ebullition from Solid Surfaces in the Absence of a Pre-existing
Gaseous Phase,” Transaction of ASME, Vol.79, pp735
Carey, V. P., 1992, Liquid-Vapor phase Change Phenomena, Ch.3&5, Taylor & Francis,
Bristol, Pa, USA
Collier, J. G., Thome, J. R., 1994, Convective Boiling and Condensation, 3rd Ed., Ch.4,
Clarendon Press, Oxford, UK
Faires, J. D., 1998, Numerical methods, 2nd Ed., Ch.3, Brooks/Cole, USA
Frank, P. I., David, P. D., 1996, Fundamentals of heat and mass transfer, 4th Ed., Ch.5,
John Wiley & Sons, Inc., USA
Hsu, Y. Y., Graham, R. W., 1986, Transport Processes in Boiling and Two-phase
Systems, Ch.1, ANS, La Grange Park, I11., USA
Iida, Y., Okutama, K., 1993, “Peculiar bubble generation on a film heater submerged in
ethyl alcohol and imposed a high heating rate over 107 K s-1,” Int. J. Heat Mass
Transfer, Vol.36, No. 10, pp2699-2701
Iida, Y., Okutama, K., 1994, “Boiling nucleation on a very small film heater subjected to
extremely rapid heating,” Int. J. Heat Mass Transfer, Vol.37, No. 17, pp2771-2780
Tsai, J.-H., Liwei, L., 2002, “Transient Thermal Bubble Formation on Polysilicon
Micro-Resisters,” Journal of Heat Transfer, Vol.124, pp375-382
Liwei. L., Pisano, A. P., Carey, V. P., 1993, “Thermal Bubble Formation on Polysilicon
Micro Resistors,” Journal of Heat Transfer, Vol.120, pp735-742
Olson, H. F., 1957, Acoustical Engineering, D.Van Nostrand Company, Inc., London,
United Kingdom
Owen, C. T., Richard, E. C., Michael, J. T., 2003, “Effect of Surface Wettability on Fast
Transient Microboiling Behavior,” Langmuir, Vol.19, pp6168-6177
Patankar, S. V., Spalding, D. B., 1972, “A Calculation Procedure for Heat, Mass and
Momentum Transfer in Three-dimensional Parabolic Flows,” Int. J. Heat Mass
Transfer, Vol.15, pp1787
Pantankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere,
Washington, D. C., 1980
Chen, P.-H., Chen, W.-C., Chang, S.-H., 1997, “Bubble Growth and Ink Ejection Process
of A Thermal Ink Printhead,” Int. J. Mech. Sci., Vol.39, No.6, pp683-695
Ross, R. A., John, D. M., William, R. K., 1985, “Thermodynamics and Hydrodynamics of
Thermal Ink Jets,” Hewlett-Packard Journal, pp21-27
Lee, S.-H., 2003, the handout of “Numerical Methods for Incompressible Viscous Flow
and Heat Transfer,” NTHU fall course.
Van Stralen, S., Cole, R., 1979, Boiling Phenomena, Ch.3, McGraw-Hill Book Co., New
York
Van Doormaal, J. P., Raithby, G. D., 1984, “Enhancements of the simple method for
predicting incompressible fluid flows,” Numerical Heat Transfer, Vol.7, pp147-
163
Wang, S.-P., Wang, K.-K., 1994, “A net inflow method for incompressible viscous flow
with moving free surface,” Int. J. Numer. Meth. Fluids, Vol.18, pp669-694
Yang, Y.-D., 2004, the experimental results, MEMs lab, NTHU, Taiwan
Zhao, Z., Glod, S., Poulikakos, D., 2000, “Pressure and power generation during
explosive vaporization on a tihin-film microheater,” Int. J. Heat Mass Transfer,
Vol.43, pp281-296
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top