跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 02:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:馬清祥
研究生(外文):Ching-Shyang Maa
論文名稱:頻率選擇性無線頻道的空間—時間碼之結構性分析與設計
論文名稱(外文):Structured Design and Analysis of Space-Time Codes in Frequency-Selective Wireless Channels
指導教授:陳俊才陳俊才引用關係
指導教授(外文):Jiunn-Tsair Chen
學位類別:博士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:140
中文關鍵詞:空間-時間碼多重輸入多重輸出頻道頻率選擇性頻道
外文關鍵詞:Space-Time CodingMIMO SystemsFrequency-Selective Channels
相關次數:
  • 被引用被引用:0
  • 點閱點閱:135
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在使用天線陣列之多路徑多重輸入多重輸出頻道的無線系統中,多路徑之延遲擴展會造成接收信號間彼此干擾以及導致頻道產生具有頻率選擇的特性。相對於頻道之頻率選擇性,多路徑傳送方向角度的空間增益使得頻道亦具有角度選擇性。根據由路徑延遲以及路徑到達或離開之方向角度所構成的頻道選擇性結構,在本論文中,首先我們將尋求新的觀點,從角度以及頻率方面去探討空間-時間碼與多路徑多重輸出入頻道之間結構的關係。接著,藉由利用多路徑多重輸出入無線頻道的結構,我們提出了一個新的空間-時間碼設計準則。使用電腦搜尋的方式,我們鑑定了新的根據通道結構所設計的空間-時間碼,來證明所提出來新設計準則的可行性。從實驗模擬,也證明了所鑑定出來新的空間-時間碼,在相對應的頻率選擇性頻道裡,它的效能比那些沒有根據頻道結構所設計的空間-時間碼的效能好很多。另外,根據所提出來新的空間-時間碼設計準則,我們提出了兩個隨通道結構調變的空間-時間碼設計系統,所提出來的設計系統不僅低複雜度,而且在信號傳輸錯誤率、信號傳輸資料量以及計算複雜度方面都非常具有彈性。實驗模擬證實了在多重輸出入頻率選擇性的頻道裡,所提出來的隨通道結構調變的空間-時間碼設計系統,它的效能比已經存在的空間-時間碼—比如雅姆提所提出來的正交空間-時間碼—的效能好很多。

此外,進來在消息理論上的發展,證明了在一個無線系統的兩端,使用多根天線陣列可以大幅地提高系統的容量。在傳送端若擁有頻道狀況的訊息,則空間-時間的特徵方向發送系統會是利用此大量系統容量最好的編碼系統。然而,在不穩定的無線頻道環境裡,此編碼系統會因為需要高複雜度多重輸出入頻道訊息的追蹤以及大量頻道狀況訊息的反饋,變得很不實際。因此,藉由利用無線多路徑頻道的結構,我們提出了一個新的空間-時間編碼系統,此編碼系統包含了一個新的以頻道結構為基底做水充填的演算法。藉由蒙地卡羅方法所模擬的中斷系統容量,證明了所提出新的空間-時間編碼系統的效能優越性。

為了能夠更有效的使用頻寬,盲蔽式信號檢測系統吸引了愈來愈多的注意力。在一個不同步的傳輸系統裡,差分相位的編碼系統因為排除了需要做相位同步的問題,所以在不同步的系統裡,它是一個很具吸引力的技術;但是,當頻道變動的很快時,它的效能會大幅度地減低。為了在一個快速變動的無線頻道裡,建立一個可靠的通訊連結,我們提出了一個同時預估不同步頻道及串接渦輪碼信號解碼的低複雜度盲蔽式信號檢測系統。此盲蔽式接收機包含兩個部分︰1)一個卡門濾波器作為其頻道預估的部分以及2)兩個解碼器—一個為差分解碼器,另一個為迴旋碼解碼器—作為其信號解碼的部分。藉由最好可能性所計算的不同軟訊息,在頻道預估器及信號解碼器間反覆的交換,所提出來的系統會預期地達到最好的效能。注意,在所提出的系統裡並沒有訓練的資料,因此對於卡門濾波器,要避免頻道相位不明確的問題是不可能的,但這個問題可由差分解碼器來處理。電腦模擬證實了所提出來的系統在快速變動的頻道環境下,展現了絕佳的強健性。
In a wireless system with multipath MIMO (multiple input multiple output) channels using antenna arrays, the delay spread of multipaths results in intersymbol interference (ISI) and channel frequency selectivity. Similar to the channel frequency selectivity, spatial gains at the multipath angles also naturally result in channel angle selectivity. Based on the channel selectivity structures characterized by the path delays and the path directions-of-departure/arrival (DODs/DOAs), in this thesis, we first seek new insights into the matching of space-time codes and multipath MIMO channels in their angle-frequency (AF) structures. Next, by exploiting the wireless MIMO channel structure, new space-time code design criteria are derived. New structure-based space-time codes are identified through computer searches to justify the new criteria. Simulation results show that these codes have superior performance over the existing codes in the corresponding frequency-selective channels. Based on the new design criteria, we propose two low-complexity channel-adapted space-time (CAST) coding schemes, where trade-offs among codeword error rate, data throughput and computational complexity are very flexible. Simulation results confirm that, in the frequency-selective MIMO channels, the CAST coding schemes can perform significantly better than the existing space-time codes, e.g., Alamouti space-time orthogonal code.

In addition, recent advances in information theory show that employing multiple antennas at both sides of a wireless link promises enormous capacity potential. With knowledge of channel state information (CSI) at the transmitter, space-time eigen-beamforming is the optimum coding scheme to exploit this potential. However, in non-stationary wireless environments, high complexity on MIMO channel tracking and large amounts of CSI feedback render such an approach impractical. By exploiting the wireless multipath channel structure, a space-time coding scheme involving a novel structure-based water-filling algorithm is proposed. Outage capacities evaluated through Monte Carlo simulations confirm the performance advantage of the proposed space-time coding scheme.

For more efficient usage of bandwidth, blind detection schemes attract more and more attention. In a noncoherent system, a differential phase coding scheme is an attractive technique as it obviates the need for phase synchronization. However, its performance degrades considerably when channels vary rapidly. To establish a reliable communication link, we propose a wireless system with a blind receiver which jointly performs noncoherent channel estimation and serially-concatenated turbo code decoding over fast time-varying Rayleigh-fading channels. The low complexity blind receiver consists of two parts: 1) a Kalman filter as its channel estimation part and 2) two decoders, including a differential decoder and a convolutional decoder, as its signal decoding part. With various soft information, calculated in the maximum likelihood sense, iteratively passed around between the channel estimator and the signal decoder, the system is expected to hopefully approach the optimal performance. Note that, with no training data in the proposed system, it is impossible for the Kalman filter to avoid the CSI phase ambiguity problem, which can be perfectly taken care of by the differential decoder. Computer simulations confirm that the proposed system exhibits robustness against fast time-variation of Rayleigh-fading channels.
Bibliography
[1] G. J. Foschini, Jr. and M. J. Gans, "On limits of wireless communication in a fading
environment when using multiple antennas," Wireless Personal Commun., vol. 6, pp.
311-335, Mar. 1998.
[2] E. Telatar, "Capacity of multiantenna Gaussian channels," AT&T Tech. Memo., June
1995.
[3] A. Narula, M. D. Trott, and G. W. Wornell, "Performance limits of coded diversity
methods for transmitter antenna arrays," IEEE Trans. Inform. Theory, vol. 45, pp.
2418-2433, Nov. 1999.
[4] I. E. Telatar, "Capacity ofmulti-antenna Gaussian channels," European Tansactions on
Communications, vol. 10, pp. 585-595, Nov./Dec. 1999.
[5] J. S. Lehnert and M. B. Pursley, "Multipath diversity reception of spread-spectrum
multiple-access commmunications," IEEE Trans. Commun., vol. 35, pp. 1189-1198,
Nov. 1987.
[6] H. Ochsner, "Direct-sequence spread-spectrum receiver for communication on
frequency-selective fading channels," IEEE J. Select. Areas Commun. vol. 5, pp. 188-
193, Feb. 1987.
[7] I-K. Chang, G. L. Stuber, and A. M. Bush, "Performance of diversity combining tech-
niques for DS/DPSK signaling over a pulse jammed multipath fading channel," IEEE
Trans. Commun., vol. 38, pp. 1823-1834, Oct. 1990.
[8] E. Lindskog, A. Ahlen, and M. Sternad, "Spatio-temporal equalization for multipath
environments in mobile radio applications," in Proc. IEEE VTC, 1995, pp. 399-403.
[9] T. Bores, G. G. Raleigh, and M. A. Pollack, "Adaptive space-time equalization for
rapidly fading communication channels," in Proc. IEEE Globecom, Nov. 1996, pp. 984-
989.
[10] W. C. Jakes, Microwave Mobile Communications. John Wiley, New York, 1974.
[11] W. Kuo and M. Fitz, "Design and analysis of transmitter diversity using intentional
frequency offset for wirless communications," IEEE Trans. Veh. Tech., vol. 46, pp. 871-
881, Nov. 1997.
[12] H. Oldfsson, M. Almgren, and M. Hook, "Transmitter diversity with antenna hopping
for wireless communication systems," in Proc. IEEE VTC, May 1997, pp. 1743-1747.
[13] A. Wittneben, "Basestation modulation diversity for digital SIMULCAST," in Proc.
IEEE VTC, May 1991, pp. 848-853.
[14] E. Biglieri, D. Divsalar, P. J. McLane, and M. K. Simon, Introduction to Trellis Coded
Modulation With Applications. New York: Macmillan, 1991.
[15] D. Divsalar and M. K. Simon, "The design of trellis coded MPSK for fading channel:
Performance criteria," IEEE Trans. Commun., vol. 36, pp. 1004-1012, Sep. 1988.
[16] S. G. Wilson and Y. S. Leung, "Trellis coded phase modulation on Rayleigh channels,"
in Proc. IEEE ICC, June 1987.
[17] N. Seshadri and C.-E. W. Sundberg, "Multi-level trellis coded modulation for the
Rayleigh fading channel," IEEE Trans. Commun., vol. 41, pp. 1300-1310, Sep. 1993.
[18] L.-F. Wei, "Coded M-DPSK with built-in time diversity for fading channels," IEEE
Trans. Inform. Theory, vol. 39, pp. 1820-1839, Nov. 1993.
[19] G. J. Foschini, "Layered space-time architecture for wireless communication in a fading
environment when using multi-element antennas," AT&T Bell Labs Tech. J., vol. 1, pp.
41-59, Sep. 1996.
[20] V. Tarokh, N. Seshadri, and A. R. Calderbank, "Space-time codes for high data rate
wireless communication: Performance analysis and code construction," IEEE Trans.
Inform. Theory, vol. 44, pp. 744-765, Mar. 1998.
[21] J.-C. Guey, M. P. Fitz, M. R. Bell, and W.-Y. Kuo, "Signal design for transmitter
diversity wireless communication systems over Rayleigh fading channels," IEEE Trans.
Commun., vol. 47, pp. 527-537, Apr. 1999.
[22] S. M. Alamouti, "A simple transmitter diversity scheme for wireless communications,"
IEEE J. Select. Areas Commun., vol. 16, pp. 1451-1458, Oct. 1998.
[23] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, "Space-time block codes from orthog-
onal designs," IEEE Trans. Inform. Theory, vol. 45, pp. 1456-1467, Jul. 1999.
[24] A. J. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless Communi-
cations. Cambridge University Press, 2003.
[25] A. J. Paulraj and C. B. Papadias, "Space-time processing for wireless communications,"
IEEE Signal Processing Magazine, vol. 14, pp. 49-83, Nov. 1997.
[26] A. R. Hammons Jr and H. El Gamal, "On the theory of space-time codes for PSK
modulation," IEEE Trans. Inform. Theory, vol. 46, pp. 524-542, Mar. 2000.
[27] S. Baro, G. Bauch, and A. Hansmann, "Improved codes for space-time trellis coded
modulation," IEEE Commun. Lett., vol. 4, pp. 20-22, Jan. 2000.
[28] X. Lin and R. S. Blum, "Systematic design of space-time codes employing multiple
trellis coded modulation," IEEE Trans. Commun., vol. 50, pp. 608-615, Apr. 2002.
[29] M. Tao and R. S. Cheng, "Improved design criteria and new trellis codes for space-
time coded modulation in slow at fading channels," IEEE Commun. Lett., vol. 5, pp.
313-315, Jul. 2001.
[30] Q. Yan and R. S. Blum, "Optimum space-time convolutional codes," in Proc. IEEE
WCNC, pp. 1351-1355, Sep. 2000.
[31] D. M. Ionescu, K. K. Mukkavilli, Z. Yan, and J. Lilleberg, "Improved 8- and 16-state
space-time codes for 4PSK with two transmit antennas," IEEE Commun. Lett., vol. 5,
pp. 301-303, Jul. 2001.
[32] Z. Chen, B. S. Vucetic, J. Yuan, and K. Leong Lo, "Space-time trellis codes for 4-
PSK with three and four transmit antennas in quasi-static at fading channels," IEEE
Commun. Lett., vol. 6, pp. 67-69, Feb. 2002.
[33] J. Ventura-Traveset, G. Caire, E. Biglieri, and G. Taricco, "Impact of diversity reception
on fading channels with coded modulation-Part I: Coherent detection," IEEE Trans.
Commun., vol. 45, pp. 563-572, May. 1997.
[34] E. Biglieri and A. Tulino, "Designing space-time codes for large number of receiving
antennas," IEE Electron. Lett., vol. 37, pp. 1073-1074, Aug. 2001.
[35] E. Biglieri, G. Taricco, and A. Tulino, "Performance of space-time codes for a large
number of antennas," IEEE Trans. Inform. Theory, vol. 48, pp. 1794-1803, July 2002.
[36] Z. Chen, J. Yuan, and B. Vucetic, "Improved space-time trellis coded modulation scheme
on slow Rayleigh fading channels," IEE Electron. Lett., vol. 37, pp. 440-441, Mar. 2001.
[37] S. Siwamogsatham, M. P. Fitz, and J. H. Grimm, "A new view of performance analysis of
transmit diversity schemes in correlated Rayleigh fading," IEEE Trans. Inform. Theory,
vol. 48, pp. 950-956, Apr. 2002.
[38] S. Siwamogsatham and M. P. Fitz, "Robust space-time codes for correlated rayleigh
fading channels," IEEE Trans. Signal Processing, vol. 50, pp. 2408-2416, Oct. 2002.
[39] D. Gore, R.W. Heath Jr., and A. J. Paulraj, "Performance analysis of spatial multi-
plexing in correlated channels." submitted to IEEE Trans. Comm. March 2002.
[40] D.-S. Shiu, G. Foschini, M. Gans, and J. Kahn, "Fading correlation and its effect on
the capacity of multi-element antenna systems," IEEE Trans. Commun., vol. 48, pp.
502-513, Mar. 2000.
[41] R. Nabar, H. Bolcskei, and A. J. Paulraj, "Transmit optimization for spatial multiplex-
ing in the presence of spatial fading correlation," in Proc. IEEE GLOBECOM, vol. 1,
pp. 131V135, 2001.
[42] Z. Hong, K. Liu, R. W. Heath, Jr., and A. Sayeed, "Spatial multiplexing in correlated
fading via the virtual channel representation," accepted for publication in IEEE J.
Select. Areas Commun.
[43] G. G. Raleigh and J. M. Cioffi, "Spatio-temporal coding for wireless communication,"
IEEE Trans. Commun., vol. 46, pp. 357-366, Mar. 1998.
[44] A. Narula, M. J. Lopez, M. D. Trott, and G. W. Wornell, "EÆcient use of side infor-
mation in multiple-antenna data transmission over fading channels," IEEE J. Select.
Areas Commun., vol. 16, pp. 1423-1436, Oct. 1998.
[45] G. Jongren, M. Skoglund, and B. Ottersten, "Combining beamforming and orthogonal
space-time block coding," IEEE Trans. Inform. Theory, vol. 48, pp. 611-627, Mar. 2002.
[46] R. Negi, A. M. Tehrani, and J. CioÆ, "Adaptive antennas for space-time coding over
block-time invariant multi-path fading channels," in Proc. IEEE VTC, pp. 70-74, May
1999.
[47] G. G. Raleigh and V. K. Jones, "Multivariate modulation and coding for wireless com-
munication," IEEE J. Select. Areas Commun., vol. 17, pp. 851-866, May 1999.
[48] S. N. Diggavi, "On achievable performance of spatial deversity fading channels," IEEE
Trans. Inform. Theory, vol. 47, pp. 308-325, Jan. 2001.
[49] H. Bolcskei, D. Gesbert, and A. J. Paulraj, "On the capacity of OFDM-based spatial
multiplexing systems," IEEE Trans. Commun., vol. 50, pp. 225-234, Feb. 2002.
[50] Z. Wang and G. B. Giannakis, "Wireless multicarrier communications: Where Fourier
meets Shannon," IEEE Signal Processing Mag., pp. 29-48, May 2000.
[51] E. G. Larsson and P. Stoica, Space-Time Block Coding for Wireless Communications.
Cambridge University Press, 2003.
[52] X. Ma and G. B. Giannakis, "Full-diversity full-rate complex-field space-time coding,"
IEEE Trans. Signal Processing, vol. 51, pp. 2917-2930, Nov. 2003.
[53] H. El Gamal, A. R. Hammons, Jr., Y. Liu, M. P. Fitz, and O. Y. Takeshita, "On the
design of space-time and space-frequency codes for MIMO frequency-selective fading
channels," IEEE Trans. Inform. Theory, vol. 49, pp. 2277-2292, Sep. 2003.
[54] Y. Liu, M. P. Fitz, and O. Y. Takeshita, "Space-time codes performance criteria and
design for frequency selective fading channels," in Proc. IEEE ICC, June 2001, pp.
2800-2804.
[55] S. Zhou and G. B. Giannakis, "Space-time coding with maximum diversity gains over
frequency-selective fading channels," IEEE Signal Processing Letters, vol. 8, pp. 269-
272, Oct. 2001.
[56] IEEE Std 802.11-1998, Part 11: Wireless Lan Medium Access Control (MAC) and
Physical Layer (PHY) specifications.
[57] P. Smulders, "Exploiting the 60 GHz band for local wireless multimedia access:
prospects and future directions," IEEE Communications Magazine, vol. 40, pp. 140-
147, Jan. 2002.
[58] A. G. Siamarou, "Broadband wireless local-area networks at millimeter waves around
60 GHz," IEEE Antennas and Propagation Magazine, vol. 45, pp. 177-181, Feb. 2003.
[59] T. Zwick, C. Fischer, and W. Wiesbeck, "A stochastic multipath channel model including
path directions for indoor environments," IEEE J. Select. Areas Commun., vol. 20, pp.
1178-1192, Aug. 2002.
[60] H. Xu, V. Kukshya, and T. S. Rappaport, "Spatial and temporal characteristics of 60-
GHz indoor channels," IEEE J. Select. Areas Commun., vol. 20, pp. 620-630, Apr.
2002.
[61] Q. H. Spencer, B. D. Jeffs, M. A. Jensen, and A. Lee Swindlehurst, "Modeling the
statistical time and angle of arrival characteristics of an indoor multipath channel,"
IEEE J. Select. Areas Commun., vol. 18, pp. 347-360, Mar. 2000.
[62] Y. Lostanlen, Y. Corre, Y. Louet, Y. Le Helloco, S. Collonge, and G. El-Zein, "Compar-
ison of measurements and simulations in indoor environments for wireless local networks
at 60 GHz," in Proc. IEEE VTC, 2002, pp. 389-393.
[63] M. T. Ivrlac, W. Utschick. and J. A. Nossek, "Fading correlations in wireless MIMO
communication systems," IEEE J. Select. Areas Commun., vol. 21, pp. 819-828, Jun.
2003.
[64] S. H. Simon and A. L. Moustakas, "Optimizing MIMO antenna systems with channel
covariance feedback," IEEE J. Select. Areas Commun., vol. 21, pp. 406-417, Apr. 2003.
[65] P. Hoeher, J. Lodge, "Turbo DPSK: Iterative differential PSK demodulation and chan-
nel decoding," IEEE Trans. Commun., vol.47, pp. 837-843, June 1999.
[66] Z. Liu, X. Ma, and G. B. Giannakis, "Space-time coding and Kalman filtering for time-
selective fading channels," IEEE Trans. Commun., vol.50, pp. 183-186, Feb. 2002.
[67] M. C. Valenti and B. D. Woerner, "Iterative channel estimation and decoding of pilot
symbol assisted turbo codes over at-fading channels," IEEE J. Select. Areas Commun.,
vol. 19, pp. 1697-1705, Sep. 2001.
[68] Haidong Zhu, B. Farhang-Boroujeny, and C. Schlegel, "Pilot embedding for joint channel
estimation and data detection in MIMO communication systems," IEEE Commun.
Lett., vol. 7, pp. 30-32, Jan. 2003.
[69] R. Raheli, A. Polydoros, and C.-K. Tzou, "Per-Survivor Processing: a general approach
to MLSE in uncertain environments," IEEE Trans. Commun., vol. 43, pp. 354-64,
Feb./Mar./Apr. 1995.
[70] S. M. Kay, Fundamentals of Statistical Signal Processing-Estimation Theory. Englewood
Cliffs, NJ: Prentice-Hall, 1993.
[71] M. Nakagami, "The m distribution: a general formula of intensity distribution of rapid
fading," Statistical Methods in Radio Wave Propagaion, W.G. Hoffman, ed., pp. 3-36,
1960.
[72] R. A. Monzingo and T. W. Miller, Introduction to adaptive arrays. New York: Wiley,
1980.
[73] S. U. Pillai, Array signal processing. New York: Springer-Verlag, 1989.
[74] Y.-Y. Wang, J.-T. Chen, and W.-H. Fang, "TST-MUSIC for joint DOA-Delay Estima-
tion," IEEE Trans. Signal Processing, vol. 49, pp. 721-729, Apr. 2001.
[75] M. C. Vanderveen, C. B. Papadias, and A. Paulraj, "Joint angle and delay estimation
(JADE) for multipath signals arriving at an antenna array," IEEE Commun. Lett., vol.
1, pp. 12-14, Jan. 1997.
[76] M. C. Vanderveen, A. J. van der Veen, and A. Paulraj, "Estimation of multipath param-
eters in wireless communications," IEEE Trans. Signal Processing, vol. 46, pp. 682-690,
Mar. 1998.
[77] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-time signal processing. Upper
Saddle River, NJ: Prentice-Hall, 1999.
[78] D. E. Dudgeon and R. M. Mersereau, Multidimensional digital signal processing. Engle-
wood Cliffs, NJ: Prentice-Hall, 1984.
[79] D. M. Ionescu, "On space-time code design," IEEE Trans. Wireless Commun., vol. 2,
pp. 20-28, Jan. 2003.
[80] O. Tirkkonen and A. Hottinen, "Square-matrix embeddable space-time block codes for
complex signal constellations," IEEE Trans. Inform. Theory, vol. 48, pp. 384-395, Feb.
2002.
[81] J.-T. Chen and Y.-C. Wang, "Performance analysis of the parametric channel estimators
for MLSE equalization in multi-path channels with AWGN," IEEE Trans. Comm., pp.
393-396, Mar. 2001.
[82] J.-T. Chen, J. Kim, and J.-W. Liang, "Multi-channel MLSE equalizer with parametric
FIR channel identification," IEEE Trans. on Veh. Technol., vol. 48, pp. 1923-1935, Nov.
1999.
[83] J.-T. Chen, C. Papadias, and G. J. Foschini, "Space-time dynamic signature assignment
for the reverse link of DS-CDMA systems," IEEE Trans. on Comm., vol. 52, pp. 120-
129, Jan. 2004.
[84] R. A. Horn and C. R. Johnson, Topics in matrix analysis. Cambridge University Press,
1991.
[85] T. Cover and J. Thomas, Elements of information theory. Wiley, NewYork, 1991.
[86] F. Kschischang, B. Frey, and H.-A. Loeliger, "Factor graphs and the sum-product algo-
rithm," IEEE Trans. Inform. Theory, vol. 47, pp. 498-519, Feb. 2001.
[87] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, "Optimal decoding of linear codes for
minimizing symbol error rate," IEEE Trans. Inform. Theory, vol. 20, pp. 284-287, Mar.
1974.
[88] J. Hagenauer, "The turbo principle: Tutorial introduction and state of the art," in Proc.
Int. Symp. Turbo Codes & Related Topics, Brest, France, Sept. 1997, pp. 1-11.
[89] H. Wang and P. Chang, "On verifying the first-order Markovian assumption for a
Rayleigh fading channel model," IEEE Trans. Veh. Technol., vol. 45, pp. 353-357, May
1996.
[90] H. Bolcskei and A. J. Paulraj, "Space-frequency coded broadband OFDM systems," in
Proc. IEEE WCNC, pp. 1-6, 2000.
[91] Yi Gong and K. Ben Letaief, "Concatenated space-time block coding with trellis coded
modulation in fading channels," IEEE Trans. Wireless Commun., vol. 1, pp. 580-590,
Oct. 2002.
[92] T. H. Liew, J. Pliquett, B. L. Yeap, L.-L. Yang, and L. Hanzo, "Concatenated space-
time block codes and TCM, turbo TCM, convolutional as well as turbo codes," in Proc.
IEEE Globecom, Nov.-Dec. 2000, pp. 1829-1833.
[93] Xiaotong Lin and R. S. Blum, "Improved space-time codes using serial concatenation,"
IEEE Communications Letters, vol. 4, pp. 221-223, July 2000.
[94] H. Schulze, "Performance analysis of concatenated space-time coding with two transmit
antennas," IEEE Trans. Wireless Commun., vol. 2, pp. 669-679, July 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top