跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/24 08:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張禕傑
研究生(外文):I-Chieh Chang
論文名稱:藉由峰度最大化於傳送分集多載波-分碼多工接取系統之盲蔽空時解碼演算法
論文名稱(外文):Blind Space-time Decoding Algorithm by Kurtosis Maximization for MC-CDMA Systems with Transmit Diversity
指導教授:祁忠勇
指導教授(外文):Chong-Yung Chi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:47
中文關鍵詞:多載波分碼多工接取空時方塊編碼盲蔽空時解碼快速峰度最大化演算法盲蔽最大比值合併超指數
外文關鍵詞:Multi-Carrier Code Division Multiple AccessSpace-time Block CodingBlind Space-time DecodingFast Kurtosis Maximization AlgorithmBlind Maximum Ratio Combiningsuper-exponential
相關次數:
  • 被引用被引用:0
  • 點閱點閱:98
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
在第三代行動通訊系統係採用分碼多工接取(Code Division Multiple Access, CDMA)技術,可提供比分頻多工接取(Frequency Division Multiple Access, FDMA)與分時多工接取(Time Division multiple Access)系統更高的系統容量。不過對於高速傳輸的環境,通道的多路徑衰減與用戶間的非完全正交展頻碼,就會造成嚴重的符碼間干擾(Intersymbol Interference, ISI)以及多工接取干擾(Multiple Access Interference, MAI)。在另一方面,近來多載波調變技術被廣泛的使用於通訊系統,例如無線區域網路IEEE 802.11a、IEEE 802.11g等,原因在於多載波調變技術較能對抗多路徑衰減的影響,所以結合CDMA與多載波調變技術,可同時具備CDMA技術的多用戶接取能力與多載波調變技術的抗通道多路徑衰減能力等等,目前已有許多這種接取技術,其中多載波分碼多工(Multi-Carrier Code Division Multiple Access, MC-CDMA)[1]技術被公認為是後第三代行動通訊(Beyond 3G, B3G)系統中最可行的下鏈(downlink)技術。在這篇論文中,在接收端單一天線情況下,就多載波分碼多工接取(Multi-Carrier Code Division Multiple Access, MC-CDMA)結合空時方塊編碼(Space-time Block Coding, STBC)技術於下鏈(downlink)傳輸提出了一種新的盲蔽空時解碼(Blind Space-time Decoding, BSTD)演算法。
我們提出的盲蔽空時解碼演算法,基本上包含祁等人提出之快速峰度最大化演算法(Fast Kurtosis Maximization Algorithm, FKMA)與盲蔽最大比值合併(Blind Maximum Ratio Combining, BMRC)演算法。此盲蔽空時解碼演算法本身為一疊代演算法具有與快速峰度最大化演算法有相同之超指數(super-exponential)的收斂速率。更進一步,我們將提出的盲蔽空時解碼演算法擴充到多根接收天線,以獲得空間分集(space diversity)的增益。最後,以一些模擬結果來證實提出的盲蔽空時解碼演算法的效能。
In this thesis, a novel blind space-time decoding (BSTD) algorithm is proposed for the down-link of a space-time coded multicarrier CDMA (ST-MC-CDMA) system with single receive antenna used. The proposed BSTD algorithm, which basically consists of Chi et. al.’s fast kurtosis maximization algorithm (FKMA) and blind maximum ratio combining (BMRC) algorithm, is an iterative algorithm with su-per-exponential convergence rate as the FKMA. Furthermore, the proposed BSTD algorithm is extended to the case of multiple receive antennas for space diversity gain. Finally, some simulation results are presented to support the efficacy of the proposed BSTD algorithm.
摘要 i
英文摘要 iii
誌謝 iv
目錄 v
第一章 簡介 1
第二章 建立離散時間多輸入多輸出模型 4
第三章 盲蔽空時解碼演算法 8
3-1 快速峰度最大化演算法 8
3-2 使用者鑑別演算法與多級連續消除程序 10
3-3 快速峰度最大化演算法之初始條件 11
3-4 盲蔽最大化合併演算法 12
3-5 盲蔽空時解碼演算法流程 13
3-6 盲蔽空時解碼演算法應用於多根接收天線 14
第四章 模擬結果 15
第五章 結論 30
附錄 附錄A : 高階統計量的定義 31
附錄B : 證明FKMA抽出的訊號必為2K個訊號源其中之一 32
附錄C : FKMA初始條件之分析 33
附錄D : MRC、MMSE與Subspace演算法
(2Tx, 1Rx) 35
附錄E : BSTD、MRC與MMSE演算法 (1Tx, 1Rx) 40
附錄F : BSTD演算法的Output SINR之推導 (2Tx, 1Rx) 41
附錄G : MRC、MMSE與Subspace演算法的Output SINR之推
導 (2Tx,1Rx) 43
附錄H : BSTD、MRC與MMSE演算法的Output SINR之推導
(1Tx, 1Rx) 44
參考文獻 45
[1] S. Hara and R. Prasad, “ Overview of multi-carrier CDMA,” IEEE Commun. Mag., vol. 35, no. 12, pp. 126-133, Dec. 1997.

[2] S. M. Alamouti, “A simple Transmit diversity Technique for Wireless Commu-nication,” IEEE Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1451-1458, Oct. 1998.

[3] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block coding for wireless communications: performance results,” IEEE Journal on Selected Ar-eas in Communications, vol. 17, no. 3, pp. 451-460, Mar. 1999.

[4] X. Cai and A. N. Akansu, “Multicarrier CDMA systems with transmit diversity,” Proc. IEEE International Conference on Vehicular Technology Conference, 2000, vol. 6, pp. 2817-2821.

[5] S. Iraji and J. Lilleberg, “Interference cancellation for space-time block-coded MC-CDMA systems over multipath fading channels,” Proc. IEEE International Conference on Vehicular Technology Conference, 2003, vol. 2, pp. 1104-1108.

[6] W. Sun and H. Li, “Subspace-based channel identification and multiuser detec-tion for space-time coded DS-CDMA systems,” Proc. IEEE International Con-ference on Signals, Systems and Computers Conference, 2001, vol. 2, pp. 984-988.

[7] H. Xiaoyu and C. Y. Huat, “Performance of space-time block coded system over frequency selective fading channel using semi-blind channel estimation tech-nique,” Proc. IEEE International Conference on Wireless Communications and Networking, 2003, vol. 1, pp. 414-419.

[8] C. Y. Chi, C. H. Peng, and H. I. Su, “Blind Multiuser Detection for Quasi-synchronous Modified MC-CDMA Systems by Kurtosis Maximization,” Proc. IEEE International Conference on Sensor Array and Multichannel Signal Processing, Barcelona, Spain, July 18-21, 2004.

[9] C. Y. Chi and C. Y. Chen, “Blind beamforming and maximum ratio combining by kurtosis maximization for source separation in multipath,” Proc. Third IEEE Workshop on Signal Processing Advances in Wireless Communications, Taoyuan, Taiwan, Mar. 20-23, 2001, pp. 243-246.

[10] Z. Ding and T. Nguyen, “Stationary points of a kurtosis maximization algo-rithm for blind signal separation and antenna beamforming,” IEEE Trans. Sig-nal Processing, vol. 48, no. 6, pp. 1587-1596, June 2000.

[11] C.-Y. Chi and C.-H. Chen, “Cumulant based inverse filter criteria for MIMO blind deconvolution: Properties, algorithms, and application to DS/CDMA systems in multipath,” IEEE Trans. Signal Processing, vol. 49, no. 7, pp. 1282-1299, July 2001.

[12] K. L. Yeung and S. F. Yau, “A super-exponential algorithm for blind decon-volution of MIMO system,” IEEE Trans. Signal Process, vol. 4, pp. 2517-2520, 1997.

[13] Y. Inouye and K. Tanebe, “Super-exponential algorithms for multichannel blind deconvolution,” IEEE Trans. Signal Processing, vol. 48, no. 3, pp. 881-888, Mar. 2000.

[14] C. Y. Chi and C. H. Chen, “Blind MAI and ISI suppression for DS/CDMA systems using HOS based inverse filter criteria,” IEEE Trans. Signal Process-ing, vol. 50, no. 6, pp. 1368-1381, June 2002.

[15] P. A. Delaney and D. O. Walsh, “A bibliography of higher-order spectra and cumulants,” IEEE Signal Processing Magazine, vol. 11, no. 3, pp. 61-70, July 1994.

[16] J. M. Mendel, “Tutorial on higher-order statistics (spectra) in signal processing and system theory: Theoretical results and some applications,” Proceedings of the IEEE, vol. 79, no. 3, pp. 278-305, Mar. 1991.

[17] C. L. Nikias and J. M. Mendel, “Signal processing with higher-order spectra,” IEEE Signal Processing Magazine, vol. 10, no. 3, pp. 10-37, July 1993.


[18] C. L. Nikias and A. P. Petropulu, Higher-Order Spectra Analysis: A Nonlinear Signal Processing Framework. Englewood Cliffs, New Jersey: Prentice-Hall, 1993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文