跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/26 11:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃楓升
研究生(外文):Feng-Hsing Huang
論文名稱:使用導引混成編碼OFDM系統之低複雜度峰值對平均功率比降低技術
論文名稱(外文):A Low-Complexity Peak-to-Average Power Ratio Reduction Technique for OFDM Systems Using Guided Scrambling Coding
指導教授:王晉良
指導教授(外文):Chin-Liang Wang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:34
中文關鍵詞:導引混成峰值對平均功率比降低
外文關鍵詞:guided scramblingPAPRreduction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:103
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
正交分頻多工(orthogonal frequency-division multiplexing,簡稱OFDM)是一種非常有效率的多載波系統,但是OFDM系統的輸出信號會產生峰值對平均功率比(peak-to-average power ratio,簡稱PAPR) 的問題。為了解決這個問題,因而發展出許多的峰值對平均功率比降低技術。其中,選擇性對映(selected mapping,簡稱SLM)和分部傳輸序列(partial transmit sequences,簡稱PTS)是兩種非常重要的峰值對平均功率比降低技術,但是,這兩種方法卻有著需要傳送額外訊息 (side information)的缺點。將導引混成編碼(guided scrambling coding) 應用在這兩種技術上,便解決了需要傳送額外訊息的問題。將導引混成編碼中的增量位元(augmenting bits)插入到原來的資料序列之前,在經過混成編碼之後,不同的增量位元會產生不同的序列,在經過映像(mapping)和快速傅利葉反轉換(inverse fast Fourier transform,簡稱IFFT)模組之後,其中一個峰值對平均功率比最低的序列將被選擇並且被傳輸,在導引混成編碼技術的接收端,我們只要經過反混成編碼,並且移除增量位元,就可以得到原始的傳輸訊號。雖然使用導引混成編碼的選擇性對映和分部傳輸序列技術不需要傳送額外資訊,但仍需要使用許多的快速傅利葉反轉換模組,造成計算複雜度的增加。
在這篇論文中,我們將專注在如何降低導引混成編碼的選擇性對映和分部傳輸序列技術的計算複雜度。我們將增量位元和資料序列的操作分離,將不同的增量位元所產生的結果事先求出,並且存在唯讀記憶體(ROM)中。如此一來,在資料序列的部份經過處理之後,只要加上唯讀記憶體中不同的增量位元所產生不同的結果,便可以選擇其中一個峰值對平均功率比最低的序列傳送。藉由這個方法,我們就可以有效的率低峰值對平均功率比。而所需要的條件,只要一個唯讀記憶體、一些加法器,和一個快速傅利葉反轉換模組即可。經由模擬和比較結果,我們也可看出所提出的低複雜度技術,卻實可以降低系統之複雜度,並且還能維持不錯的峰值對平均功率比之表現。
Orthogonal frequency-division multiplexing (OFDM) is an efficient transmission scheme for multicarrier systems, but its output signals may exhibit high peak-to-average power ratios. To deal with the high PAPR problem, many PAPR reduction methods have been proposed. Selected mapping (SLM) and partial transmit sequences (PTS) are two important techniques for PAPR reduction, but they need to transmit side information at the transmitter side. Guided scrambling (GS) SLM and GS-PTS techniques augment the binary data sequence with several bits in the first data bit position. The augmenting bits set the scrambler’s initial condition in the GS-SLM and GS-PTS methods. Thus with different patterns of the augmenting bits, the candidate signals to be selected for transmission can be generated by passing different augmented data sequences through the scrambler, the constellation mapping block, and the IFFT block. At the receiver in the GS-SLM and GS-PTS methods, the received sequence is unscrambled and the augmenting bits are removed directly. GS-SLM and GS-PTS do not require the transmission of side information, but they still need a bank of IFFT’s, i.e., involving high computational complexity.
In this thesis, we focus on reducing the high computational complexity of the GS-SLM and GS-PTS methods. We separate the operations of the augmented data sequence into the operations of the augmenting bits and the operations of original data sequence. Different augmenting bits are processed in advance and the results are saved into a ROM. After the operations of the data sequence are performed, the result is added by previous computed signals in ROM to generate a set of candidate signals. One candidate signal with the lowest PAPR will be selected for transmission. The proposed methods only need one IFFT, few adders, and a ROM and thus significantly reduce the computational complexity of the original GS-SLM and GS-PTS methods. The simulation results also show that the proposed GS-SLM and GS-PTS methods have almost the same PAPR performance as the original ones.
Contents
Abstract i
Contents iii
List of Figures v
List of Tables vii

Chapter 1 Introduction
1.1 Basics of OFDM 1
1.2 PAPR Problem and Existing Solutions 2
1.3 Thesis Outline 5

Chapter 2 PAPR Reduction Using Guided Scrambling Coding
2.1 The principle of GS techniques 6
2.2 GS-SLM 8
2.3 GS-PTS 9
2.4 Simulation Result 10
2.5 Summary 11

Chapter 3 A New Technique for the Reduction of the Complexity in GS-SLM and GS-PTS
3.1 The Proposed Low-Complexity GS-SLM Method 13
3.2 The Proposed Low-Complexity GS-PTS Method 17
3.3 Summary 20

Chapter 4 Simulation Result and Comparison of Complexity
4.1 Simulation Results 21
4.2 Comparison of Complexity 27
4.3 Summary 29

Chapter 5 Conclusions 30

Bibliography 31
[1] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Boston: Artech House, 2000.
[2] J. Terry and J. Heiskala, OFDM Wireless LANs: A Theoretical and Practical Guide. Sams, 2002.
[3] ETSI, “Radio broadcasting systems: Digital Audio Broadcasting (DAB) to mobile, portable and fixed receivers,” WTS 300 401 v1.3.2, Sept. 2000.
[4] ETSI, “Digital Video Broadcasting (DVB): Framing structure, channel coding and modulation for digital terrestrial television,” ETS 300 744 v1.3.2, Sept. 2000.
[5] IEEE, “part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” IEEE Std. 802.11, Aug. 1999.
[6] ETSI, “Broadcasting Radio Access Networks (BRAN): Requirements and architectures for broadband fixed radio access networks,” TR 1001 177 v1.1.1, May 1998.
[7] ETSI, “High Performance Radio Local Area Networks (HIPERLAN): Requirements and architectures for wireless ATM access and interconnection,” TR 101 031 v1.1.1, July 1997.
[8] P. S. Chow, J. C. Tu, and J. M. Cioffi, “Performance evaluation of a multichannel transceiver system for ADSL and VHDSL services,” IEEE J. Selected Areas Commun., vol. 9, pp. 909-919, Aug. 1991.
[9] P. S. Chow, J. C. Tu, and J. M. Cioffi, “A discrete multitone transceiver system for HDSL applications,” IEEE J. Select Areas Commun., vol. 9, pp. 909-919, Aug. 1991.
[10] R. van Nee, “OFDM for high speed wireless network,” IEEE P 802.11-97/123, Nov. 1997.
[11] R. Gross and D. Veeneman, “Clipping distortion in DMT ADSL systems,” Electron Lett., vol.29, pp. 2080-2081, Nov. 1993.
[12] D. J. G. Mestdagh, P. Spruyt, and B. Biran, “Analysis of clipping effect in DMT-based ADSL system,” in Proc. 1994 IEEE Int. Conf. Commun. (ICC ‘94), New Orleans, LA, May 1997, pp. 293-300.
[13] R. O’Neill and L. B. Lopes, “Envelop variations and spectral splatter in clipped multicarrier signals,” in Proc. 1995 IEEE Int. Symp. Personal, Indoor and Mobile Radio Commun. (PIMRC ‘95), Toronto, Canada, Sept. 1995, pp. 71-76.
[14] X. Li and L. J. Cimini, “Effects of clipping and filtering on the performance of OFDM,” IEEE Commun. Lett., vol. 2, pp. 131-133, May 1998.
[15] S. H. Müller and J. B. Huber, “OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences,” Electron Lett., vol. 33, pp. 368-369, Feb. 1997.
[16] S. D. S Jayalath and C. Tellambura, “Peak-to-average power ratio reduction of an OFDM signal using data permutation with embedded side information,” in Proc. 2001 IEEE International Symposium on Circuits and Systems (ISCAS ‘01), Sydney, Australia, vol. 4, May 2001, pp. 562-565.
[17] S. G. Kang, J. G. Kim, and E. K. Joo, “A novel subblock partition scheme for partial transmit sequence OFDM,” IEEE Trans. Broadbasting, vol. 45, pp. 333-338, Sept. 1999.
[18] R. van Nee, “OFDM codes for peak-to-average power reduction and error correction,” in Proc. 1996 IEEE Global Telecommun. Conf. (GLOBECOM ‘96), London, vol. 1, 1996, pp. 740-744.
[19] S. H. Müller and J. B. Huber, “A novel peak power reduction scheme for OFDM,” in Proc. 1997 IEEE Int. Symp. Personal Indoor and Mobile Radio Commun. (PIMRC ‘97), Heisinki, Findland, Sep. 1997, pp. 1090-1094.
[20] A. D. S. Jayalath and C. Tellambura, “The use of interleaving to reduce the peak-to-average power ratio of an OFDM signal,” in Proc. 2000 IEEE Global Telecommun. Conf. (GLOBECOM ‘00), San Francisco, CA, Nov.-Dec. 2000, pp. 82-86.
[21] J. A. Davis and J. Jedwab, “Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes,” IEEE Trans. Inform. Theory, vol. 45, pp. 2397-2417, Nov. 1999.
[22] T. A. Wilkinson and A. E. Jones, “Minimisation of the peak to mean envelope power ratio of multicarrier transmission schemes by block coding,” in Proc. 1995 IEEE Veh. Technol. Conf. (VTC ‘95), Chicago, July 1995, pp. 825-829.
[23] X. Li and J. A. Ritcey, “M-sequences for OFDM PAPR reduction and error correction,” Electron Lett., vol. 33, pp. 545-546, July 1997.
[24] C. Tellambura, “Use of m-sequences for OFDM peak to average power ratio reduction,” Electron Lett., vol. 33, pp. 1300-1301, July 1997.
[25] T. A. Wilkinson and A. E. Jones, “Minimization of the peak-to-mean envelope power ratio of multicarrier transmission schemes by block coding,” in Proc. 1995 IEEE Vehicular Technology Conference (VTC ‘95), Chicago, July 1995, pp. 825-829.
[26] K. A. S. Immink, Codes for Mass Data Storage Systems. Amsterdam. The Netherlands: Shannon Foundation Publishers, 1999.
[27] I. J. Fair, W. D. Grover, W. A. Krzymien and R. I. Macdonald, “Guided Scrambling: a new line coding technique for high bit rate fiber optic transmission systems,” IEEE Trans. Commun. vol. 39, pp. 289-297, Feb. 1991.
[28] Yan Xin and I. J. Fair, “Peak-to-average ratio reduction of an OFDM signal using guided scrambling coding,” in Proc. 2003 IEEE Global Telecommun. Conf. (GLOBECOM 2003), San Francisco, CA, vol. 4, 2003, pp. 2390-2394.
[29] S. Haykin, Communication Systems. New York: John Wiley &Sons, Inc.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top