跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/27 10:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡淑君
研究生(外文):Shu-Chun Chien
論文名稱:奈微米結構引發微液珠致動
論文名稱(外文):Droplet Movement Induced by Nano Assembled Molecules And Micro Textures
指導教授:錢景常曾繁根曾繁根引用關係
指導教授(外文):Ching-Chang ChiengFan-Gang Tseng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:微機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:84
中文關鍵詞:親疏水梯度微液珠致動硫醇
外文關鍵詞:hydrophobicity gradientDroplet movementsurface tensionthiol SAM’snoano and micro Structures
相關次數:
  • 被引用被引用:2
  • 點閱點閱:65
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本研究宗旨在於利用親疏水梯度引發微液珠致動,近年來所發展的微液珠致動多以靜電力、電潤濕、溫度梯度等方式來驅動液珠,上述方式並不適用在生醫方面的微液珠傳輸,生醫工作流體如含有核醣核酸(RNA)、細胞以及蛋白質,易在運輸的過程中受到電及溫度的破壞,故本實驗以親疏水梯度來致動液珠,期能達成一簡易製作並能不破壞核醣核酸(RNA) 、細胞以及蛋白質的驅動方式。
本研究先分別以親水及疏水兩種不同自我組裝單層硫醇分子的奈米結構以擴散方式自我組裝在以E-Gun鍍上金的玻璃基材表面形成親疏水梯度的差異,這種親疏水梯度的差異成功使液珠能夠致動,再利用微機電製程技術以SU-8 2035負型光阻製作出具有不同圓柱狀結構的粗糙表面,之後分別探討鍍金的玻璃基材及具有圓柱結構並鍍金表面兩者結合上親水及疏水兩種不同自我組裝單層硫醇分子的特性,之後選擇圓柱大小為80μm,圓柱間距為40μm的條件,配合上具有親疏水梯度的自我組裝單層分子作用,模仿荷花的表面結構,製造出一親疏水梯度相差較大的環境,成功改質圓柱表面的特性使親疏水特性明顯,並液珠能移動較長的距離。
關鍵字:親疏水梯度、微液珠致動、硫醇
Abstract
This paper introduces a droplet movement method on top of a surface prepared by gradient nano-scale self-assembled molecules on micro sized textures. Experimental results demonstrate the contact angles on hydrophobic surfaces without/with micro posts increase from 110�a to 143�a, while on the hydrophilic surfaces decrease from 56.7�a to 12.4�a. As a result, the droplet moving speed is increased around twice on the gradient SAM surface with micro structures than that with only SAM gradient or only micro textures.
Droplet manipulation has been becoming an emerging alternative to continuous flow systems commonly employed in �嵨AS for its accurate dose control, less drag force from contact surface, and simpler flow system. Numerous approaches have been developed and tested to transport and manipulate �愮-sized liquid droplets moving on the solid surface. The driving mechanisms for moving droplets on solid surfaces include electrostatic actuation, light-driven on photoisomerizable monolayer surface , the combination of Marogoni flow, capillary flow and phase change , and asymmetrically roughed surfaces , etc. All these driving forces are related to surface tension heterogeneity, and hysteresis of contact angles. This paper proposes another gentle approach, by employing surface hydrophobicity gradient with micro structured surfaces, to generate much larger surface tension gradient for droplet movement.
Keywords: hydrophobicity gradient, Droplet movement, surface tension, thiol SAM’s, noano and micro Structures
參考文獻:
[1]. B. He and J. Lee, “Dynamic wettability switching by surface roughness effect”, IEEE 16th Int. Conf. MEMS (MEMS 03’), Kyoto, Japan, 2003, 120-123.
[2]. K. Manoj and G. M. Whitesides, “How to make water run uphill”, Science, 256, 1992, 1539-1541.
[3]. V. Ludviksson and E. N. Lightfoot, “The dynamics of thin liquid films in the presence of surface-tension gradients”, Am. Inst. Chem. Eng. J., 17, 1971, 1166-1173.
[4]. S. Daniel, et al., “Fast drop movements resulting from the phase change on a gradient surface”, Science, 291, 2001, 633-636.
[5]. J. P. Folkers, P. E. Laibinis, and G. M. Whitesides, “Self-assembled monolayers of alkanethiols on gold: comparisons of monolayers containing mixtures of short- and long-chain constituents with methyl and hydroxymethyl terminal groups”, Langmuir, 8, 1992, 1330-1341.
[6]. J. L. Wilbur, A. Kumar, H. A. Biebuyck, E. Kim, and G. M. Whitesides, “Microcontact printing of self-assembled monolayers: applications in microfabrication”, Nanotechnology, 7, 1996, 452-457.
[7]. G.G. Roberts, et al., “Langmuir blodgett film”, Plenum Press, New York, 1990, 17.
[8]. A. Ulman, “Introduction to organic thin films from langmuir-blodgett to self-assembly”, Academic Press, New York, 1991, 237.
[9]. C. S. Dulcey, et al., “Photochemistry and pattering of self-assembled monolayer films containing aromatic hydrocarbon functional groups”, Langmuir, 12, 1996, 1638-1650.
[10]. G. Moller, M. Harke, and H. Motdschmann, et al., “Controlling microdrooplet formation by light”, Langmuir, 14, 1998, 4955-4957.
[11]. K. Ichimura, et al., “Light-driven motion of liquids on a photoresponsive surface”, Science, 288, 2000,1624-1626.
[12]. A. W. Adamson, “Physical chemistry of surface”, John Wiley & Sons, Inc., New York, pp. 1990,385-386.
[13]. Lee, J., Moon, H., Fowler, J., Scholllhammer, T. and Kim, CJ, “Electrowetting and Electrowetting -on-Dielectric for Microscale Liquid Handling”, Sensors and Actuators A, 95, 2002, 259-268.
[14]. K. Ichimura, S-K Oh, and M. Nakagawa, “Light-Driven Motion of Liquids on a Photorespon -sive Surface”, 288, 2000, 1624-1626.
[15] Ulman, Abraham, “An introduction to ultrathin organic films” Langmuir-Blodgett to self-assemblyBoston ,1991.
[16]Uthara Srinivasan, Michael R. Houston, Roger T. Howe, Fellow, IEEE, and Roya Maboudian, “Alkyltrichlorosilane-based Self-Assembled Monolayer Film for Stiction Reduction in silicon Micromachines.”Jol. of Microelectromechanical system, 7,1998,252-259.
[17]. Daniel, D S., Chaudhury, M.K., and Chen, J.C., “Fast Drop Movements Resulting from the Phase Change on a Gradient Surface” Science, Vol. 291, pp 633-636, 2001.
[18] Bo Liedberg and Pentti Tengvall, “Molecular Gradients of ω-Substituted Alkanethiols on Gold: Preparation and Characterization”, Langmuir, 1995,11,3821-3827.
[19] Joerg Lahann, Samir Mitragotri, Thanh-Nga Tran, Hiroki Kaido, Jagannathan Sundaram, Insung S. Choi, Saskia Hoffer, Gabor A. Somorjai, and Robert Langer, “A Reversibly Switching Surface” , Science , 2003, 17, 371-374.
[20] Joonwon kim and Chang-Jin, “CJ” kim, “Nanostructureed Surfaces for Dramatic Reduction of Flow Resistance in Droplet-Based Microfluids” , IEEE , 479-482, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top