跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/24 19:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾子敏
論文名稱:陰離子型分散劑分子量對介電陶瓷漿體分散性的影響
指導教授:許貫中許貫中引用關係
指導教授(外文):Kung Chung Hsu
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:110
中文關鍵詞:陰離子共聚物合成分散陶瓷
外文關鍵詞:anionic copolymersynthesisdispersionceramic
相關次數:
  • 被引用被引用:2
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要為合成陰離子型共聚物:聚4-羧基氨基-4-酮基-2-丁烯酸/丙烯醯胺共聚物(PCOB)。在實驗過程中改變起始劑濃度、鏈轉移劑濃度和反應溫度來得到不同分子量的PCOB,探討其對BaTi4O9漿體的分散效果,並和商用分散劑聚甲基丙烯酸銨鹽(PMAAN)做比較。PCOB係以馬來酸酐和氨基甲酸銨鹽反應生成4羧基氨基-4酮基-2-丁烯酸銨鹽單體,再與丙烯醯胺經自由基反應而得。合成之COB單體與PCOB均以H1-NMR和IR光譜確認其結構,並利用GPC測得四種PCOB之重量平均分子量,分別為2.8x105, 1.0x105,6.0x104和1.8x104。
本研究利用黏度法、沉降法、粒徑分佈、表面電位和吸附量等實驗來評估漿體的分散效果。此外,經由壓胚和燒結,測量胚體之燒結密度、生胚密度、介電常數和介電損失。
結果顯示PCOB (Mw=1.8x104)在BaTi4O9漿體的分散效果優於其他分子量,因PCOB (Mw=1.8x104)在BaTi4O9粉體表面有較大的吸附量,使得漿體有較低的黏度與較大的表面電位,而在胚體的測試方面,添加PCOB (Mw=1.8x104)者有較高的生胚密度與燒結密度,表示其粒子分散均勻而堆積緻密。在電性部分,含PCOB (Mw=1.8x104)的胚體可得較高的介電常數與較低的介電損失,因此顯示PCOB (Mw=1.8x104)對BaTi4O9漿體有很好的分散效果。
This study has prepared an anionic copolymer, poly (4-carboxyamino-4 -oxo-2-butene/acrylamide) (PCOB).Experimentally, PCOBs of different molecular weight were prepared by changing the initiator concentra- tion, chain transfer agent concentration, and reaction temperature and their dispersion properties on BaTi4O9 slurries were studied. The results were compared to those with a commercial dispersant, i.e., ammonium salt of polymethylacrylic acid, PMAAN. PCOB was prepared from 4-carboxyamino-4-oxo-2-butene and acrylamide through a free radical copolymerization. 4-carboxyamino-4-oxo-2-butene was made by reacting maleic anhydride with ammonium carbamate. The chemical structures of PCOB have been identified confirmed by H1-NMR and IR spectra, and weight-average molecule weight of 4 PCOBs (Mw=2.8x105、1.0x105、6.0x104 and 1.8x104) were measured by GPC.
The dispersion properties of each dispersant were evaluated by the viscosity, sedimentation volume, particle size distribution, zeta potential ,of the resulting BaTi4O9 slurries. Besides,the sintered density, green density, dielectric constant and dielectric loss of BaTi4O9 compacts were determined.
The results indicate that PCOB (Mw=1.8x104) shows the best dispersion effects on the BaTi4O9 powder in aqueous slurries than PCOB with other molecular weight. For greater amount of PCOB(Mw=1.8x104) was adsorbed on BaTi4O9 particles. The resulting green parts with PCOB (Mw=1.8x104) show greater density, and the sintered parts have higher dielectric constant and lower dielectric loss. Thus, PCOB (Mw=1.8x104) exhibits better dispersion properties than other PCOBs.
第一章 緒論---------------------------------------------------1
第二章 文獻回顧-----------------------------------------------3
2-1 分散劑應用於陶瓷材料之文獻探討--------------------------3
2-2分散原理-------------------------------------------------7
2-2-1 粒子之特性------------------------------------------7
2-2-2 粒子之凝聚(coagulation)與絮凝(flocculation) --------9
2-2-3 分散機構-------------------------------------------11
2-3界面活性劑之影響----------------------------------------17
2-3-1界面活性劑之種類------------------------------------17
2-3-2分散劑之吸附行為--------------------------------------18
2-4分散效果之評估方法----------------------------------------22
2-4-1分散系統之流變性質----------------------------------22
2-4-2沉降體積法------------------------------------------24
2-5 BaTi4O9粉末的合成--------------------------------------26
2-6 微波介電陶瓷材料介紹-----------------------------------28
2-6-1 介電陶瓷原理---------------------------------------28
2-6-2 高頻介電陶瓷材料-----------------------------------29
2-6-3 微波陶瓷材料之應用---------------------------------32
第三章 高分子的合成與鑑定------------------------------------36
3-1 前言---------------------------------------------------36
3-2 高分子之合成-------------------------------------------36
3-2-1 藥品與儀器設備-------------------------------------36
3-2-2 實驗步驟-------------------------------------------38
3-3 分子量之量測-------------------------------------------41
3-4 PCOB之固含量測定---------------------------------------42
3-5 結果與討論---------------------------------------------43
3-5-1高分子結構鑑定--------------------------------------43
3-5-2 分子量之量測---------------------------------------46
3-5-3 固含量之測量---------------------------------------46
3-5-4 PCOB之產率-----------------------------------------47
第四章 BaTi4O9粒子分散效果之測試-----------------------------51
4-1 前言---------------------------------------------------51
4-2 實驗評估-----------------------------------------------52
4-2-1 藥品與儀器設備-------------------------------------52
4-2-2 實驗材料-------------------------------------------53
4-3 實驗製程-----------------------------------------------53
4-3-1 漿料混合-------------------------------------------53
4-3-2 燒結-----------------------------------------------54
4-4 性質分析-----------------------------------------------54
4-4-1 黏度測試-------------------------------------------54
4-4-2 沉降體積之量測-------------------------------------54
4-4-3 粒徑分佈測量---------------------------------------54
4-4-4 粒子表面電位之測量---------------------------------55
4-4-5 吸附量之量測---------------------------------------55
4-4-6鋇離子溶出量測量----------------------------------- 55
4-4-7 胚體密度-------------------------------------------56
4-4-8 介電常數與介電損失---------------------------------57
4-4-9 微結構分析-----------------------------------------58
第五章 分散劑在BaTi4O9粒子分散效果之結果與討論---------------62
5-1 BaTi4O9粒子與高分子分散劑在水中的解離------------------62
5-2分散劑在BaTi4O9粒子上的吸附-----------------------------63
5-3 BaTi4O9漿體的黏度--------------------------------------68
5-4 BaTi4O9漿體中粒子的沉降--------------------------------71
5-5表面電位------------------------------------------------79
5-6 粒徑分佈-----------------------------------------------82
5-7 BaTi4O9漿體之Ba2+溶出量--------------------------------88
5-8 BaTi4O9胚體的密度--------------------------------------90
5-9 BaTi4O9胚體電性之研究----------------------------------94
5-10微結構-------------------------------------------------98
第六章 結論-------------------------------------------------102
參考資料----------------------------------------------------104
1. 呂宗昕教授,“電子陶瓷介紹”,台大化工系 (2003).
2. J. Sun , L. Gao and J. Guo , “Influence of the initial pH on the adsorption behaviour of dispersant on nano zirconia powder”, J. Eur. Ceram. Soc., 19 (1999) 1725-1730.
3. X. Wang , B. I. Lee , L. Mann, “Dispersion of barium titanate with polyaspartic acid in aqueous media”, Colloids Surf. A., 202 (2002) 71-80.
4. M. Ramzi Ben Romdhane , Sami Boufi , Samir Baklouti , Thierry Chartier , Jean-Francois Baumard, “Dispersion of Al2O3 suspension with acrylic copolymers bearing carboxylic groups” , Colloids Surf. A., 212 (2003) 271-283.
5. D. Santhiya , G. Nandini , S. Subramanian , K. A. Natarajan , S. G. Malghan, ”Effect of polymer molecular weight on the adsorption of polyacrylic acid at the alumina-water interface” Colloids Surf. A., 133 (1998) 157-163.
6. L. C. Guo , Y. Zhang , N. Uchida and K. Uematsu, “Influence of temperature on stability of aqueous alumina slurry containing polyelectrolyte dispersant” , J. Eur. Ceram. Soc., 17 (1997) 345-350.
7. K. K. Das , P. Somasundaran, “Elocculation-dispersion characteristics of alumina using a wide molecular weight range of polyacrylic acids” , Colloids Surf. A., 223 (2003) 17-25.
8. Z. C. Chen. , T. A. Ring and J. Lemaitre, “Stabilization and processing of aqueous BaTiO3 suspensions with polyacrylic acid”, J. Am. Cream. Soc., 75 [12] 3201-208 (1992).
9. J. Sun , L. Bergstrom , and L. Gao, “Effect of magnesium ions on the adsorption of poly(acrylic acid) onto alumina” , J. Am. Cream. Soc., 84 [11] 2710-12 (2001).
10. U. Paik , V. A. Hackley , H. W. Lee, ”Dispersant- Binder interactions in aqueous silicon nitride suspensions”, J. Am. Cream. Soc., 82 [4] 833-40 (1999).
11. C. J. Shin , B. H. Lung , M. H. Hon, “Colloidal processing of titanium nitride with poly-(methacrylic acid) polyelectrolyte” , Materials Chemistry and Physics., 60 (1999) 150-157.
12. J. Davies , J. G. P. Binner , “The role of ammonium polyacrylate in dispersing concentrated alumina suspensions” , J. Eur. Ceram. Soc., 20 (2000) 1539-1553.
13. H. Mahdjoub , P. Roy , C. Filiatre , G. Bertrand , C. Coddet, “The effect of the slurry formulation upon the morphology of spray-dried yttria stabilized zirconia particles” , J. Eur. Ceram. Soc., 23 (2003) 1637-1648.
14. F. Shojai , A.B.A. Pettersson , T. Mantyla , J. B. Rosenholm, “Electrostatic and electrosteric stabilization of aqueous slips of 3Y-ZrO2 powder” , J. Eur. Ceram. Soc., 20 (2000) 277-283.
15. F. Tang, X. Huang, Y. Zhang, J. Guo, “Effect of dispersants on surface chemical properties of nano- zirconia suspensions” , Ceramics International., 26 (2000) 93-97.
16. K. K. Das , P. Somasundaran , “Ultra-low dosage flocculation of alumina using polyacrylic acid” , Colloids Surf. A., 182 (2001) 25-33.
17. J. H. Jean and H. R. Wang , “Dispersion of aqueous barium suspensions with ammonium salt of poly(methcarylic acid)” , J. Am. Cream. Soc., 81 [6] 1589-99 (1998).
18. G. Bertrand , C. Filiatre , H. Mahdjoub , A. Foissy , C. Coddet ,
”Influence of slurry characteristics on the morphology of spray- dride alumina powders”, J. Eur. Ceram. Soc., 23 (2003) 263-271.
19. X. Liu, L. Huang, X. Xu, X. Fu, H. Gu, “Optimizing the rheological behavior of silicon nitride aqueous suspensions”, Ceramics International., 26 (2000) 337-340.
20. J. C. Kim , K. H. Auh , C. H. Schilling, “Effects of polysaccharides on the rheology of alumina slurries” , J. Eur. Ceram. Soc., 20 (2000) 259-266.
21. J. H. Jean , H. R. Wang , “Effects of solids loading, pH, and polyelectrolyte addition on the stabilization of concentrated aqueous BaTiO3 suspension”, J. Am. Cream. Soc., 83 [2] 277-80 (2000).
22. L. C. Guo , Z. Yao, N. Uchida and K. Uematsu, “Adsorption effects on the rheological properties of aqueous alumina suspensions with polyelectrolyte” , J. Am. Cream. Soc., 81 [3] 549-56 (1998).
23. L. Bergstrom , K. Shinozaki , H. Tomiyama, and N. Mizutani, “Colloidal Processing of a Very Fine BaTiO3 Powder-Effect of Particle interactions on the suspension properties
,Consolidation, and Sintering Behavior” , J. Am. Cream. Soc., 80 [2] 291-300 (1997).
24. 吳心玲 , “氧化鋁漿體的穩定性研究” , 成大化工所碩士論文, 2000.
25. 王惠民, “兩性高分子對黏土粒子行為之影響” , 成大化工所碩士論文, 1994.
26. 李鴻銘,“異性兩性苯乙烯-馬來酸酐共聚合物之合成與特性”成大化工所碩士論文,1995.
27. B. Yarar and J. A. Kitchener, “Selective flocculation of minertls” ,
Trans. Inst. Min. Metall. 79(3), 23-33 (1970).
28. G. D. Parfitt, “Dispersion of powders in liquids” , 3rd. ed. Applied Science Publishers, Inc., New Jersey (1981).
29. D. H. Napper , “Polymeric Stabilization of Colloidal Dispersions” , Academic Press Inc. , San Diego (1983).
30. R. H. Ottewill , J.Colloid Interface Sci. , 58, 357 (1977).
31. T. Sato and R. J. Ruch , “Stabilization of Colloid Dispersions by Polymer Adsorption” , Marcel Dekker, Inc., New York (1980).
32. M. Yang, C. M. Neubauer, H. M. Jennings, “Interparticle potential and sedimentation behavior of cement suspensions--review and results from paste”, Adv. Cem. Based Mater., 5, 1~7, 1997.
33. .H. Uchikawa, S. Hanehara, D. Sawaki, “The role of steric repulsive forces in paste prepared with organic admixture”, Cem. Concr. Res., 27, 37~50, 1997.
34. I. D. Morrison, S. Ross, “Colloidal dispersions-suspensions, emulsions, and foams”, John Wiley & Sons Inc., N. Y., USA, 2002.
35. S. Vallar , D. Houivet , J. El Fallah , D. Kervadec and J.-M. Haussonne, “Oxide slurries stability and powders dispersion : Optimization with zate potential and rheological measurements”, J. Eur. Ceram. Soc., 19 (1999) 1017-1021.
36. D. H. Napper , J.Colloid Interface Sci. , 58, 390(1977).
37. W. Heller , T.L. Pugh , J. Polymer Sci., 67, 203 (1960)
38. B. Vincent , Advanced in Colloid and Interface Science , 4, 193-277 (1974).
39. E. D. Goddard and B. Vincent, “Polymer adsorption and dispersion stability”, ACS Symposium series , 240 , Washinton, D.C.(1984).
40. T. F. Tadros, “The effect of polymer on dispersion properties” , Academic Press , London (1982).
41. J. M. H. M. Schentijens , G. J. Fleer , J. Phys. Chem. , 83, 1619 (1979).
42. T. C. Patton , J. Paint Technol. , 42 (551), 666 (1970)
43. J. Davies, J. G. P. Binner, “The role of ammonium polyacrylate in dispersing concentrated alumina suspensions”, J. Eur. Ceram. Soc., 20, 1539~1553, 2000.
44. R. L. Rarick, J. J. Bhautty, H. M. Jennings, “Surface area measurement using gas sorption: application to cement paste”, Materials Science of Concrete, 1~39, E & FN Spon, N. Y., USA, 1995.
45. S. Brunauer, P. H. Emmett, and E. Teller , “Adsorption of Gases in Multimolecular Layers” , J. Am. Chem. Soc., 60 , 309-319 (1938).
46. I. Langmuir, J. Am, Chem, Soc., 38, 2267(1916): 40, 1361(1918).
47. R. A. Alberty, “Physical Chemistry” , 5th Edition SI Version.
48. 賴建吉 , “親油基或親水基改良之馬來酸酐共聚合物之合成與其效果” , 成大化工所碩士論文 , 1992.
49. R. Ramachandra Rao , H. N. Roopa , T. S. Kannan, “Effect of pH on the dispersability of silicon carbide powders in aqueous media”, Ceramics International., 25 (1999) 223-230.
50. G. H. Jonker and W. Kwestro, “The ternary systems BaO-TiO2-SnO2 and BaO-TiO2-ZrO2” , J. Am. Cream. Soc., 41 [10] 390-394 (1958).
51. H. M. O’Bryan , JR. and J. Thomson, J. K. Plourde, “A new BaO-TiO2 Compund with temperature-stable high permittivity and low microwave loss” , J. Am. Cream. Soc., 57 [10] 450-53 (1974).
52. J. H. Choy and Yang Su Hain, “Microwave Characteristics of BaO- TiO2 Ceramics Prepared Via a Citrate Route” , J. Am. Cream. Soc., 78 [5] 1169-1172 (1995).
53. 吳亭儀, “添加氧化鋯對Ba2Ti9O20 生成機制研究” , 台大材料所碩士論文,2003.
54. 黃正亮 , 潘宗龍, “微波介電陶瓷材料” , 中華民國陶業研究學會會刊 第二十二卷 第四期 51-58.
55. 陳龍賓 , “分散劑的合成以及對鈦酸鋇漿體分散性能的評估” , 台灣師範大學化學研究所碩士論文, 2002.
56. 應國良, “鈦酸鋇漿體分散劑的合成與應用” , 台灣師範大學化學研究所碩士論文, 2003.
57. J. Cesarano and I. A. Aksay, “Stability of aqueous α-Al2O3 suspensions with poly(methacrylic acid) polyelectrolyte”, J. Am. Cream. Soc., 71 [4] 250-55 (1988).
58. 虞邦英 , “鈦酸鋇膠粒於水基溶液中之表面吸附及分散研究” , 台大材料所碩士論文 , 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top