跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/27 05:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:薛朝光
研究生(外文):HSUEH, CHAO-KUANG
論文名稱:場鑄單∕群樁側向荷載非線性行為之研究
論文名稱(外文):Nonlinear Behavior of the Drilled Shafts Subjected to Lateral Loading
指導教授:陳俶季陳俶季引用關係林三賢林三賢引用關係
指導教授(外文):CHERN, SHUH-GILIN, SAN-SHYAN
學位類別:博士
校院名稱:國立海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:289
中文關鍵詞:場鑄樁側向荷載施工混凝土p-y曲線有限元素群樁效應
外文關鍵詞:drilled shaftlateral loadconstructionconcretep-y curvesfinite elementgroup effects
相關次數:
  • 被引用被引用:17
  • 點閱點閱:906
  • 評分評分:
  • 下載下載:112
  • 收藏至我的研究室書目清單書目收藏:0
場鑄鋼筋混凝土樁承受側向載重的作用時,由於樁體幾何結構與樁周土壤等材料特性及互制效應之影響,其行為呈現出高度的非線性;而群樁基礎更因樁帽束制程度與各樁間作用所致之折減效應,使其反應更加複雜。因此本研究便透過實地參與高鐵樁載重試驗計劃所量測與蒐集之相關資料,分別應用p-y曲線法及三維有限元素法,進行單∕群樁側向荷載非線性反應分析,來釐清和探討樁基施工、樁體與樁帽鋼筋混凝土材料,及各階荷載下樁帽束制效果等因素,對土壤與樁基側向荷載行為之影響。以期能更為合理且完整的描述場鑄單∕群樁側向荷載下之非線性行為反應。
經由樁基施工前後CPT與DMT試驗結果之比較,及LPILE與GROUP程式之分析結果顯示,樁基施工對鑽掘群樁鄰近土壤強度參數的影響有使其趨於軟化的現象;但卻相對造成預鑄群樁周遭土壤之緊密度或勁度等明顯提高。因而也將導致兩種群樁基礎的整體側向荷載行為和群樁效應發生變化。
在探討樁土材料非線性與樁帽束制程度的影響上,首先根據高鐵場鑄單樁與群樁的設計參數和配置,考慮非線性土壤與樁基結構內嵌鋼筋及混凝土開裂等材料特性、樁身-土壤-樁帽三者界面間滑動分離之互制關係等,透過三維實體元素來擬真實模擬基樁、樁帽、周遭土壤之複雜幾何結構與其層次分佈,建構發展出一套足以有效模擬之數值分析模型。並藉助ABAQUS程式進行單樁與群樁側向荷載行為分析。而由分析所得樁頂側向位移、樁身變位與樁體鋼筋之受力分佈情形等,均與試樁量測結果有相當高的吻合程度。同時亦可顯示出樁土界面間之滑動、分離,樁帽與樁體混凝土開裂等現象。足以驗證本分析模型與採用模式之適用性及良好的模擬效果。最後經由比較將樁體和樁帽視為彈性材料下所引致分析結果的差異情形,在相同側向載重作用下,若不考慮混凝土開裂或樁帽束制效果隨荷載增加之變化,則會低估了樁頂位移與樁身變位;並對群樁相對後排樁之樁頂剪力與彎矩的分配產生明顯高估的現象。進而對群樁效應或土壤反力折減情形造成顯著的影響。
The response of drilled shafts, which are composed of steel and concrete, subjected to laterally loading is highly nonlinear due to the effects of nonlinearity in shaft and soil materials, geometric properties and pile-soil interaction. The response of group drilled shafts is more complicated when the effects of cap restraint and pile-soil-cap interaction become significant. The main purpose of this study is to investigate and explore the importance of the above-mentioned effects on lateral performance of drilled shafts. Based on the in-situ arrangement, designed parameters and lateral pile load test results of high-speed railway system in Taiwan, the appropriate p-y approach and three- dimensional finite element analysis model are used to simulate the real behavior of single and group drilled shafts subjected to lateral load. The numerical model takes into account complicated geometric structures of shaft and soil, material nonlinearity of soil and reinforced concrete, pile-soil-cap interaction, half-infinite soil boundary conditions and cap restrained variation with concrete cracking. The finite element code, ABAQUS, is adopted for three- dimensional analyses. The effects of construction on laterally loaded pile groups are also studied.
Comparisons between pre- and post-construction CPT and DMT data and evaluation of the computed results show that the installation of drilled shafts tend to soften the surrounding soil, whereas the driven piles cause a densifying effect Moreover, it indicated that neglecting the effects of construction can cause discrepant p-multipliers and responses for both types of pile-groups subjected to lateral load.
The calculated results of the load-deflection relationships of the pile head or cap, the deflection curves and the stress distributions of steel along the shaft agreed well with the measured data. The cracking states of concrete and the soil movements around the shafts and cap obtained in this study also show that the presented model could simulate the behavior of laterally loaded drilled-shafts well. When compared with the analyzed results of the linear model that treats shaft and cap as elastic material, deflections along the shaft will be underestimated while the maximum shear force and moment distributions of trailing row piles will be overestimated. Furthermore, the pile group efficiency or soil p-reduction will be influenced significantly, if the effects of concrete cracking or cap restraint are disregarded.
摘 要 I.
目 錄 III.
表目錄 VIII.
圖目錄 IX.
符號說明 XVI.
第一章 緒 論 1.
1.1 樁基礎之功能與目前在工程上的相關應用 1.
1.2 樁基礎於側向荷載行為反應分析上之限制 1.
1.3 研究方法與目的 5.
1.4 研究內容 6.
1.5 論文架構 8.
第二章 文獻回顧 11.
2.1 基樁受側向載重分析方法 11.
2.1.1 彈性理論分析法 11.
2.1.2 極限破壞法 13.
2.1.3 地盤反力係數法 15.
2.1.4 有限元素法 23.
2.2 樁基施工型式的影響 26.
2.2.1 錘擊式基樁對凝聚性土壤的影響 27.
2.2.2 錘擊式基樁對非凝聚性土壤的影響 28.
2.2.3 鑽掘式基樁對凝聚性土壤的影響 29.
2.2.4 鑽掘式基樁對非凝聚性土壤的影響 30.
2.3 混凝土開裂對場鑄樁之影響及計算方法 31.
2.3.1 樁身混凝土開裂之影響 31.
2.3.2 場鑄樁撓曲剛度之計算方法 32.
2.4 群樁效應與樁帽束制效應 35.
2.5 高鐵現地側向樁載重試驗 37.
2.5.1 試驗計劃 37.
2.5.2 現地地質概況 38.
2.5.3 現地基樁配置 38.
2.5.4 側向樁載重試驗 39.
2.5.5 其他現地試驗 42.
第三章 分析方法與模型建構 81.
3.1 由DMT建立土壤之p-y曲線 82.
3.2 p-y曲線法之分析程式介紹 86.
3.2.1 LPILE程式 86.
3.2.2 GROUP程式 86.
3.3 有限元素法之分析程式ABAQUS簡介 87.
3.4 數值分析模型 89.
3.4.1 分析網格模型建構 89.
3.4.2 分析模型之元素 91.
3.4.3 材料組成模式 92.
3.4.4 土壤結構界面之互制行為 99.
3.4.5 初始大地應力 101.
第四章 樁基施工對群樁受側向載重行為之影響 111.
4.1 前 言 111.
4.2 群樁土壤反力折減係數 112.
4.3 樁基施工對鄰近土壤狀態之影響 113.
4.3.1 CPT結果之變化與土層深度及土壤狀態的關係 113.
4.3.2 DMT結果之變化與土層深度及土壤狀態的關係 114.
4.4 單樁受側向載重之撓曲變形分析 115.
4.4.1 場鑄單樁之撓曲變形分析結果 116.
4.4.2 預鑄單樁之撓曲變形分析結果 118.
4.5 群樁受側向載重之撓曲變形分析 119.
4.6 歸納與討論 122.
第五章 場鑄鋼筋混凝土樁側向荷載之非線性反應分析 151.
5.1 前 言 151.
5.2 高鐵側向試樁案例分析模擬 152.
5.2.1 模型架構 152.
5.2.2 荷載施加與參數說明 153.
5.2.3 土壤近遠域邊界 154.
5.3 側向荷載樁之模擬分析結果 156.
5.4 基樁側向荷載行為受鋼筋混凝土材料之影響 159.
5.5 歸納與討論 161.
第六章 場鑄群樁基礎之側向荷載非線性反應分析 185.
6.1 前 言 185.
6.2 高鐵場鑄群樁側向荷載分析之數值模型 186.
6.3 分析結果與比較 187.
6.3.1 樁帽位移與土壤之應變分佈 188.
6.3.2 樁頂剪力分配與樁帽底部摩擦力 189.
6.3.3 樁身變位、彎矩、剪力及土壤反力分佈 190.
6.3.4 樁周土壤之應力路徑變化 192.
6.4 樁帽束制與混凝土開裂對場鑄群樁行為之影響 195.
6.4.1 對樁帽位移與各樁頂剪力分配之影響 195.
6.4.2 對樁身變位、彎矩及剪力分佈之影響 196.
6.4.3 對土壤反力分佈之影響 198.
6.5 群樁土壤反力折減係數 199.
6.6 歸納與討論 200.
第七章 結論與建議 243.
7.1 結 論 243.
7.2 建 議 246.
參考文獻 247.
1. 林耀煌,「高層建築基礎開挖施工法與設計實例」,長松出版社,台北巿 (1984)。
2. 歐晉德,「基樁之側向支承力」,地工技術,第18期,第60-68頁 (1987)。
3. 左天雄,「以Marchetti平鈑膨脹儀試驗(DMT)求取土壤 p-y曲線之研究」,土木水利,第十五卷,第一期,第85-96頁 (1988)。
4. 王訓濤,周南山,「承受側向力之樁基與土壤之互制作用」,地工技術,第24期,第39-48頁 (1988)。
5. 周南山,譯張有齡之「張氏簡易側樁分析法(上篇:靜力部分)」,地工技術,第25期,第64-82頁 (1989)。
6. 石正義,林文祺,「場鑄基樁工法施工指南」,詹氏書局,台北巿 (1991)。
7. 洪世勳,「場鑄群樁側向荷重-位移分析」,國立台灣工業技術學院碩士論文,台北 (1996)。
8. 交通部高速鐵路工程局,「高鐵橋樑基礎最佳化研究總報告」,財團法人台灣營建研究院研究報告,台北 (1997)。
9. 林新哲,「考慮混凝土開裂之場鑄樁側向載重分析」,國立台灣科技大學碩士論文,台北 (1998)。
10. 范嘉程,「承受橫向力之群樁分析」,地工技術,第66期,第85-96頁 (1998)。
11. 中國土木水利工程學會混凝土工程委員會,「混凝土工程設計規範與解說(土木401-86)」,中國土木水利工程學會 (1999)。
12. 李立仁,「應用FLAC程式分析場鑄側向單樁之非線性行為」,國立台灣科技大學碩士論文,台北 (1999)。
13. 朱惠君,「側向荷重樁之非線性反應分析」,國立台灣大學博士論文,台北 (2000)。
14. 邱俊翔,「基樁側向荷載行為之研究」,國立台灣大學博士論文,台北 (2001)。
15. 莊明仁,「基樁承受側向荷重之反應分析」,國立成功大學博士論文,台南 (2001)。
16. 陳俶季,薛朝光,「由DMT探討樁基施工對群樁受側向載重行為之影響」,力學期刊,系列B,第十八卷,第二期,pp.141-157 (2002)。
17. 龔東慶,歐章煜,「土壤小應變三軸試驗之發展與應用」,地工技術,第96期,第5-16頁 (2003)。
18. 吳筱寒,「黏土中基樁側向位移改良之數值模擬」,國立中央大學碩士論文,桃園 (2003)。
19. 薛朝光,陳俶季,林三賢,「鋼筋混凝土基樁側向荷載行為之三維數值分析」,中國土木水利工程學刊,已接受 (2003)。
20. ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-95) and Commentary (ACI 318R-95), American Concrete Institute (1995).
21. Ashour, M., Norris, G., and Pilling, P., "Lateral loading of a pile in layered soil using the strain wedge model," Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 124, No. 4, pp. 303-315 (1998).
22. Ashour, M., and Norris, G., "Modeling lateral soil-pile response based on soil-pile interaction," Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 126, No. 5, pp. 420-428 (2000).
23. Baguelin, F., Frank, R., and Said, Y. H., "Theoretical study of lateral reaction mechanism of piles," Geotechnique, Vol. 27, No. 3, pp. 405-434 (1977).
24. Baldi, G., Bellotti, R., Ghionna, V., Jamiolkowski, M., Marchetti, S., and Pasqualini, E., "Flat dilatometer tests in calibration chambers," Proceedings In Situ ''86 ASCE Specialty Conference on Use of In Situ Tests in Geotechnical Engineering, Blacksburg, Virginia, pp. 431-446 (1986a).
25. Baldi, G., Bellotti, R., Ghionna, V., Jamiolkowski, M., and Pasqualini, E., "Interpretation of CPTs and CPTUs - part II : drained penetration in sands," Proceedings of the 4th International Geotechnical Seminar on Field Instrumentation and In Situ Measurements, Nanyang Technological Institute, Singapore, pp. 129-156 (1986b).
26. Banerjee, P. K., and Davies, T. G., "The behaviour of axially and laterally loaded single piles embedded in non-homogeneous soils," Geotechnique, Vol. 28, No. 3, pp. 309-326 (1978).
27. Bhowmik, S. K., "Three-dimensional nonlinear finite element analysis of laterally loaded piles in clay," Ph.D. Thesis, University of Illinois at Urbana-Champaign (1992).
28. Bowles, J. E., Foundation Analysis and Design, 5th Edition, McGraw-Hill Book Company, New York, U.S.A. (1996).
29. Briaud, J.-L., and Miran, J., "The flat dilatometer test," Report No. FHWA-SA-91-44, Federal Highway Administration, Washington, D.C., 102p. (1992).
30. Broms, B. B., "Lateral resistance of piles in cohesive soils," Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 90, No. SM2, pp. 27-63 (1964a).
31. Broms, B. B., "Lateral resistance of piles in cohesionless soils," Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 90, No. SM3, pp. 123-156 (1964b).
32. Broms, B. B., "Design of laterally loaded piles," Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 91, No. SM3, pp. 77-99 (1965).
33. Brown, D. A., Reese, L. C., and O''Neill, M. W., "Cyclic lateral loading of a large-scale pile group in sand," Journal of the Geotechnical Engineering Division, ASCE, Vol. 113, No. 11, pp. 1326-1343 (1987).
34. Brown, D. A., Morrison, C., and Reese, L. C., "Lateral load behavior of pile group in sand," Journal of the Geotechnical Engineering Division, ASCE, Vol. 114, No. 11, pp. 1261-1276 (1988).
35. Brown, D. A., and Shie, C.-F., "Three-dimensional finite element model of laterally loaded piles," Computers and Geotechnics, Vol. 10, No. 1, pp. 59-79 (1990).
36. Campanella, R. G., and Robertson, P. K., "Current status of the piezocone test," Proceedings of the 1st International Symposium on Penetration Testing, ISOPT-1, Orlando, Florida, Vol. 1, pp. 93-116 (1988).
37. Chang, Y. L., Discussion on "Lateral pile loading tests," by Feagin, Trans ASCE, Paper No. 1959, pp. 272-278 (1937).
38. Chen, W. F., and Atsata, T., Theory of Beam-Columns, Vol. 1 In-Plane Behavior and Design, McGraw-Hill, New York, U.S.A., 513p. (1976).
39. Chen, L., and Poulos, H. G., "Analysis of pile-soil interaction under lateral loading using infinite and finite elements," Computers and Geotechnics, Vol. 15, No. 4, pp. 189-220 (1993).
40. Chen, W. F., and Han, D. J., Plasticity for Structural Engineers, Springer-Verlag, New York, U.S.A. (1988).
41. Cox, W. R., Dixon, D. A., and Murphy, B. S., "Lateral load tests of 25.4mm (1in.) diameter piles in very soft clay in side-by-side and in-line groups," Proceedings of Laterally Loaded Deep Foundations: Analysis and Performance, American Society for Testing and Materials, SPT 835, pp. 122-139 (1984).
42. Cummings, A. E., Kerkhoff, G. O., and Peck, R. B., "Effect of driving piles in soft clay," Transactions., ASCE, Vol. 115, pp. 275-286 (1950).
43. de Mello, V. F. B., "Foundations of building on clay," Proceedings of the 7th International Soil Mechanics and Foundation Engineering conference, State of the Art Report, Mexico, D. F., Mexico, pp. 49-136 (1969).
44. Desai, C. S., and Appel, G. C., ŗ-D analysis of laterally loaded piles in sand," Proceedings of the 2nd Annual Offshore Technology Conference, Houston, Texas, Paper No. OTC 2079 (1976).
45. Douglas, D. J., and Davis, E. H., "The movement of buried footings due to moment and horizontal load and the movement of anchor plates," Geotechnique, Vol. 14, pp. 115-132 (1964).
46. Fan, C. C., "The Behavior of Laterally Loaded Single Piles and Group Piles in Sand," Ph.D. Thesis, University of Illinois at Urbana-Champaign (1996).
47. Fleming, W. G. K., and Sliwinski, Z., "The use and influence of bentonite in bored pile construction," Construction Industry Research and Information Association (CIRIA), Report PG3 (1977).
48. Focht, J. A., and Koch, K. J., "Rational analysis of the performance of offshore pile groups". Proceedings of 5th Annual Offshore Technology Conference, Houston, Texas, Vol. 2, No. OTC 1896, pp. 701-708 (1973).
49. Geschwondner, L. F., Disque, R. O., and Bjorhovde, R., Load and resistance factor design of steel structures, Prentice Hall, New Jersey, U.S.A. (1994).
50. Hansen, J. B., "The ultimate resistance of rigid pile against transversal force," Bulletin, Geoteknist Institute, Copenhagen, No. 12, pp. 5-9 (1961).
51. Hetenyi, M., Beams on Elastic Foundation, University of Michigan Press, Ann Arbor, Michigan (1946).
52. Hibbit, H. D., Karlsson, B. I., and Sorensen, P., ABAQUS Theory and User''s Manual, Version 6.2, Hibbit, Karlsson & Sorensen, Inc., U.S.A. (2002).
53. Holloway, D. M., Moriwaki, Y., Stevens, J. B., and Perez, J.-Y., "Response of a pile group to combined axial and lateral loading," Proceedings of 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, Sweden, Vol. 2, pp. 731-734 (1981).
54. Housel, W. S., and Burkey, J. R., "Investigation to determine the driving characteristics of piles in soft clay," Proceedings of the 2nd International Soil Mechanics and Foundation Engineering conference, Vol. 5, pp. 146-154 (1948).
55. Hsueh, C. K., Lin, S. S., and Chern, S. G., "Lateral performance of drilled shaft considering nonlinear soil and structure material behavior," Journal of Marine Science and Technology, Accepted (2003).
56. Huang, A. B., Hsueh, C. K., O''Neill, M., W., Chern S., and Chen, C., "Effects of Construction on Laterally Loaded Pile Groups," Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 127, No. 5, pp. 385-397 (2001).
57. Huang, A. B., and Ma, M. Y., "An analytical study of cone penetration tests in granular material," Canadian Geotechnical Journal, Vol. 31, No. 1, pp. 91-103 (1994).
58. Isenhower, W. M., "Improved methods for evaluation of bending stiffness of deep foundations," Proceedings International Conference on Design and Construction of Deep Foundation, FHWA, Vol. 2, pp. 571-585 (1994).
59. Jamiolkowski, M., Ghionna, V. N., Lancellotta, R., and Pasqualini, E., "New correlations of penetration tests for design practice," Proceedings of the 1st International Symposium on Penetration Testing, ISOPT-1, Orlando, Florida, pp. 263-296 (1988).
60. Kimura, M., Kosa, K., and Morita, Y., "Full-scale failure tests on laterally loaded group piles," 3rd International Conference on Deep Foundation Practice incorporating PILETALK, Singapore, pp. 147-154 (1994).
61. Kishida, H., "Ultimate bearing capacity of piles driven into loose sand," Soil and Foundations, Vol. 7, No. 3, pp. 20-29 (1967).
62. Lieng, J. T., "Behavior of laterally loaded piles in sand - large scale model tests," Ph.D. Thesis, Department of Civil Engineering, Norwegian Institute of Technology, Trondheim, Norway, 206p. (1988).
63. Lin, S. S., "Use of filamented beam elements for bored pile analysis," Journal of Structural Engineering, ASCE, Vol. 123, No. 9, pp. 1236-1244 (1997).
64. Lin, S. S., Liao, J. C., Yang, T. S., and Juang, C. H., "Nonlinear analysis of single concrete piles", Journal of Geotechnical Engineering, Vol. 32, No. 3, pp. 165-176 (2001).
65. Lin, S. S., Liao, J. C., Juang, C. H., and Liang, T. T., "Use of Bouc-Wen model for seismic analysis of concrete piles," Deep Foundations 2002, ASCE, No. 116, pp. 372-384 (2002).
66. MacGregor, J. G., Reinforced Concrete: Mechanics and Design, Prentice Hall, New Jersey, U.S.A. (1988).
67. Marchetti, S., "A new in situ test for the measurement of horizontal soil deformability," Proceedings Conference on In Situ Measurement of Soil Properties, ASCE Specialty Conference, Raleigh, N.C., Vol. 2, June, pp. 255-259 (1975).
68. Marchetti, S., "In situ tests by flat dilatometer," Journal of the Geotechnical Engineering Division, ASCE, Vol. 106, pp. 299-321 (1980).
69. Marchetti, S., "The flat dilatometer design applications," Keynote lecture of the third Geotechnical Engineering Conference, Cairo University, Egypt, 26p. (1997).
70. Matlock, H., and Reese, L. C., "Generalized solution for laterally loaded piles," Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 86, No. SM5, pp. 1220-1246 (1960).
71. Matlock, H., "Correlations for design of laterally loaded piles in soft clay," Proceedings of the 2nd Annual Offshore Technology Conference, Houston, Texas, Vol. 1, pp. 577-594 (1970).
72. Matthewson, C. D., "The elastic behavior of a laterally loaded pile," Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand (1969).
73. McVay, M., Casper, R., and Shang, T.-I., "Lateral response of three-row groups in loose to dense sands at 3d and 5d pile spacing," Journal of the Geotechnical Engineering Division, ASCE, Vol. 121, No. 5, pp. 436-441 (1995).
74. McVay, M., Zhang, L., Molnit, T., and Lai, P., "Centrifuge testing of large laterally loaded pile groups in sands," Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 124, No. 10, pp. 1016-1026 (1998).
75. Menetrey, P., and William, K. J., "Triaxial Failure Criterion for Concrete and its Generalization," ACI Structural Journal, Vol. 92, pp. 311-318 (1995).
76. Mindlin, R. D., "Forces at a point in the interior of a semi-infinite solid," Physics, Vol. 7, pp. 195-202 (1936).
77. Moh, Z.-C., "Current deep foundation practice in Taiwan and southeast Asia," Proceedings, International Conference on Design and Construction of Deep Foundations, Orlando, Florida, FHWA, Vol. 1, pp. 236-259 (1994).
78. MSC.Software, MSC/PARTAN User''s Guide, Version 2001 (r3), MacNeal-Schwendler Corporation, U.S.A. (2001).
79. Muqtadir, A., and Desai, C. S., "Three-dimensional analysis of a pile-group foundation," International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 10, pp. 41-58 (1986).
80. Ng, C. W. W., and Zhang, L. M., "Three-dimensional analysis of performance of laterally loaded sleeved piles in sloping ground," Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 127, No. 6, pp. 499-509 (2001).
81. Ng, C. W. W., Zhang, L. M., and Nip, D. C. N., "Response of laterally loaded large-diameter bored pile groups," Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 127, No. 8, pp. 658-669 (2001).
82. O''Neill, M. W., "Group action in offshore piles," Proceedings of the Specialty Conference on Geotechnical Engineering in Offshore Practice, American Society of Civil Engineers, Austin, Texas, pp. 25-63 (1983).
83. O''Neill, M. W., and Hassan, K. M., "Drilled Shafts: Effects of Construction on Performance and Design Criteria," Proceedings, International Conference on Design and Construction of Deep Foundations, Orlando, Florida, FHWA, Vol. 1, pp. 137-187 (1994).
84. O''Neill, M. W., "Side resistance in piles and drilled shafts," Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 127, No. 1, pp. 3-16 (2001).
85. Ou, C. Y., Liao, J. T., and Cheng, W. L., "Building response and ground movements induced by a deep excavation," Geotechnique, Vol. 50, No. 3, pp. 365-375 (2000).
86. Prakash S., and Sharma, H. D., Pile Foundations In Engineering Practice, John Wiley & Sons, Inc., New York, U.S.A. (1990).
87. Poulos, H. G., "Behavior of laterally loaded piles: I - single piles," Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 97, No. SM5, pp. 711- 731 (1971a).
88. Poulos, H. G, "Behavior of laterally loaded piles: II - group piles," Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 97, No. SM5, pp. 733-751 (1971b).
89. Poulos, H. G., and Davis, E. H., Pile Foundation Analysis and Design, John Wiley and Sons, Inc., New York, U.S.A. (1980).
90. Poulos, H. G., and Hull, T. S., "The role of analytical mechanics in foundation engineering," Foundation Engineering, Current Principals and Practices, ASCE, Vol. 2, pp. 1578-1606 (1989).
91. Rajashree, S. S., and Sitharam, T. G., "Nonlinear finite-element modeling of batter piles under lateral load," Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 127, No. 7, pp. 604-612 (2001).
92. Randolph, M. F., "The response of flexible piles to lateral loading," Geotechnique, Vol. 31, No. 2, pp. 247-259 (1981).
93. Reese, L. C., Cox, W. R., and Koop, F. D., "Analysis of laterally loaded piles in sand," Proceedings of the 6th Annual Offshore Technology Conference, Houston, Texas, Vol. 2, Paper No. OTC 2080, pp. 473-485 (1974).
94. Reese, L. C., and Welch, R. C., "Lateral loading of deep foundations in stiff clay," Journal of the Geotechnical Engineering Division, ASCE, Vol. 101, No. GT7, pp. 633-649 (1975).
95. Reese, L. C., Cox, W. R., and Koop, F. D., "Field testing and analysis of laterally loaded piles in stiff clay," Proceedings of the 7th Annual Offshore Technology Conference, Houston, Texas, Vol. 2, Paper No. OTC 2312, pp. 672-690 (1975).
96. Reese, L. C., "Laterally loaded piles: program documentation," Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. GT4, Proceeding Paper 12862, pp. 287-305, April (1977).
97. Reese, L. C., "Design and construction of drilled shafts," Journal of the Geotechnical Engineering Division, ASCE, Vol. 104, No. 1, pp. 91-116 (1978).
98. Reese, L. C., "Handbook on design of piles and drilled shafts under laterally load," Report No. FHWA-IP-84-11, U.S. Department of Transportation, Federal Highway Administration, Office of Implementation, Washington, D.C., 386p. (1984).
99. Reese, L. C., Awoshika, K., Lam, P. H. F., and Wang, S. T., Documentation of Computer Program GROUP1, Analysis of a Group of Piles Subjected to Axial and Lateral Loading, Ensoft, Inc., Austin, Texas (1987).
100. Reese, L. C., and Wang, S. T., Documentation of Computer Program LPILE version 4.0, Ensoft, Inc., Austin, Texas, 442p. (1993).
101. Reese, L. C., and Wang, S. T., "Analysis of piles under lateral loading with nonlinear flexural rigidity," Proceedings International Conference on Design and Construction of Deep Foundation, FHWA, Vol. 2, pp. 842-856 (1994).
102. Reese, L. C., and Wang, S. T., Technical Manual of Documentation of Computer Program GROUP 4.0 for Windows, Analysis of a Group of Piles Subjected to Axial and Lateral Loading, Ensoft, Inc., Austin, Texas (1996).
103. Reese, L. C., and Van Impe, W. F., Single Piles and Pile Groups under Lateral Loading, A. A. Balkema, Rotterdam, Netherlands (2001).
104. Robertson, P. K., Davies, M. P., and Campanella, R. G., "Design of laterally loaded driven piles using the flat dilatometer," Journal of the Geotechnical Testing, ASTM, Vol. 12, No. 1, pp. 30-38 (1989).
105. Robinsky, E. I., and Morrison, C. E., "Sand displacement and compaction around model friction piles," Canadian Geotechnical Journal, Vol. 1, No. 2, pp. 81-93 (1964).
106. Rollins, K. M., Peterson, K. T., and Weaver, T. J., "Lateral load behavior of full-scale pile group in clay," Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 124, No. 6, pp. 468-478 (1998).
107. Ruesta, R. F., and Townsend, F. C., "Evaluation of laterally loaded pile group at Roosevelt bridge," Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 123, No. 12, pp. 1261-1276 (1997).
108. Schmertmann, J. H., "Guidelines for using the CPT, CPTU and Marchetti DMT for geotechnical design," Report No. FHWA-PA-87-023-24, U.S. Department of Transportation, Federal Highway Administration, Office of Research and Special Studies, Vol. 3-4 (1988).
109. Spillers, W. R., and Stoll, R. D., "Lateral response of piles," Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 90, No. SM6, pp. 1-9 (1964).
110. Stevens, J. B., and Audibert, J. M. E., "Re-examination of p-y curve formulations," Proceedings of 11th Annual Offshore Technology Conference, Houston, Texas, No. OTC 3402, pp. 397-403 (1979).
111. Tomlinson, M. J., Pile Design and Construction Practice, Fourth edition, E & FN Spon, London (1994).
112. Trochanis, A. M., Bielak, J., and Christiano, P., "Three-dimensional nonlinear study of piles," Journal of Geotechnical Engineering, ASCE, Vol. 117, No. 3, pp. 429-447 (1991a).
113. Trochanis, A. M., Bielak, J., and Christiano, P., "Simplified model for analysis of one or two piles," Journal of Geotechnical Engineering, Vol. 117, No. 3, pp. 448-466 (1991b).
114. Wang, S. T., "Analysis of drilled shafts employed in earth-retaining structures," Ph.D. Thesis, Department of Civil Engineering, University of Texas, Austin, Texas (1986).
115. Wroth, C. P., Carter, J. P., and Randolph, M. F., "Stress changes around a pile driven into cohesive soil." Conference on Recent Development in the Design and Construction of Piles, Institute of Civil Engineering, London (1979).
116. Zhang, L. M., McVay, M. C., and Lai, P., "Numerical analysis of laterally loaded 3 3 to 7 3 pile groups in sands." Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 125, No. 11, pp. 936-946 (1999).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top