跳到主要內容

臺灣博碩士論文加值系統

(100.24.118.144) 您好!臺灣時間:2022/12/06 04:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李汪聰
研究生(外文):Won-Chung Lee
論文名稱:斑節蝦於高鹽度及亞硝酸緊迫下其尿酸生成及尿素生成增加之研究
論文名稱(外文):Studies on the increase of uricogenesis and ureogenesis of kuruma shrimp Marsupenaeus japonicus at high salinity and under the stress of elvated ambient nitrite
指導教授:陳建初陳建初引用關係
指導教授(外文):Jiann-Chu Chen
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:105
中文關鍵詞:斑節蝦鹽度亞硝酸尿酸生成尿素生成氮排泄
外文關鍵詞:Marsupenaeus japonicussalinitynitriteuricogenesisureogenesisnitrogenous excretion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:392
  • 評分評分:
  • 下載下載:65
  • 收藏至我的研究室書目清單書目收藏:1
斑節蝦飼養於鹽度18、26、34及42 ‰ ,分析(1)氮排泄,包括氨-氮排泄、尿素-氮排泄及有機氮排泄等,(2)組織氮化合物,包括氨、尿素、尿酸以及與尿酸生成(uricogenesis)有關的核苷酸相關化合物(nucleotide-related compounds),(3)參與尿酸生成的黃嘌呤去氫酶(xanthine dehydrogenase, XDH)及黃嘌呤氧化酶(xanthine oxidase, XOD)活性,以及參與尿素生成(ureogenesis)的尿酸酶(uricase)及精胺酸酶(arginase)活性。斑節蝦之氨-氮排泄以在鹽度18 ‰明顯高於鹽度42 ‰,但有機氮及尿素-氮排泄則以在鹽度42 ‰較高。血淋巴及表皮組織的氨、尿素及尿酸濃度在鹽度42 ‰明顯高於鹽度18 ‰,但肝胰臟的氨和尿酸以及鰓中的尿酸則以在鹽度18 ‰較高;核苷酸相關化合物包括黃嘌呤(xanthine)及次黃嘌呤(hypoxanthine)的濃度在鰓組織以在鹽度42 ‰明顯高於鹽度18 ‰,但在肝胰臟組織則以在鹽度18 ‰較高。斑節蝦之鰓、中腸、肝胰臟及肌肉之精胺酸酶以在鹽度42 ‰明顯高於鹽度18 ‰,肝胰臟之XDH及XOD活性以在鹽度42 ‰明顯高於鹽度18 ‰。
斑節蝦具有參與尿酸生成的XDH及XOD活性以及參與尿素生成的尿酸酶及精胺酸酶活性。發現尿酸生成來自於核苷酸分解(degradation of nucleotides),而且於鹽度42 ‰下,肝胰臟參與生成尿酸的XDH及XOD活性上升,但參與尿酸降解(uricolysis)的尿酸酶活性沒有上升,因此在鹽度42 ‰下尿酸生成增加,血淋巴及表皮(epidermis)中的尿酸濃度明顯增加,因此於肝胰臟生成之尿酸運送至表皮組織儲存,脫殼時脫出。本研究發現尿素生成來自尿酸降解以及精胺酸水解(hydrolysis of arginine),參與尿酸降解之尿酸酶活性在不同鹽度之間無顯著差異,但參與精胺酸水解的精胺酸酶活性則以高鹽度(42 ‰)明顯高於鹽度18 ‰,因此高鹽度(42 ‰)下尿素增加主要是來自於精胺酸水解。
斑節蝦分別暴露於0、0.36及1.39 mM的亞硝酸-氮濃度下,研究(1)氮排泄包括氨-氮排泄、尿素-氮排泄及有機氮排泄,(2)組織氮化合物包括氨、尿素、尿酸以及與尿酸生成有關的核苷酸相關化合物,(3)組織參與尿酸生成的XDH及XOD活性,以及參與尿素生成的尿酸酶及精胺酸酶活性。斑節蝦暴露在1.39 mM的亞硝酸-氮下,有機氮、氨-氮及尿素-氮排泄增加;血淋巴尿素及表皮組織的尿酸濃度增加,但是血淋巴尿酸及表皮組織的尿素濃度則下降;核苷酸相關化合物包括黃嘌呤及次黃嘌呤的濃度在鰓組織較高,而在肝胰臟組織則下降;肝胰臟精胺酸酶、XDH及XOD活性顯著增加。
斑節蝦暴露在亞硝酸-氮下,肝胰臟中參與尿酸生成的XDH及XOD活性會上升,但參與尿酸降解之尿酸酶活性並沒有上升,因此斑節蝦在亞硝酸緊迫下尿酸生成增加,提高血藍素氧的親和力,一部份尿酸運送至表皮儲存,當脫殼時脫出。斑節蝦在亞硝酸緊迫下,參與尿酸降解之尿酸酶活性與對照組比較無顯著差異,但參與精胺酸水解的精胺酸酶活性增加,因此斑節蝦在亞硝酸緊迫下其尿素增加主要是來自於精胺酸水解。斑節蝦在亞硝酸緊迫下血淋巴尿素及尿素排泄以及血淋巴及肝胰臟精胺酸酶活性增加,精胺酸水解生成尿素,以減少代謝生成氨,及降低因體內過多的氨與累積的亞硝酸共存的毒性。
Kuruma shrimp Marsupenaeus japonicus Bate reared in salinities of 18 ‰, 26 ‰, 34 ‰ and 42 ‰ (g kg-1) were examined for (1) nitrogenous excretion including ammonia-N excretion, urea-N excretion and organic-N (organic nitrogen) excretion, (2) the levels of nucleotide-related compounds, ammonia, urea and uric acid in tissues, and (3) the activities of enzymes involved in uricogenesis like xanthine dehydrogenase (XDH) and xanthine oxidase (XOD), and activities of emzyme involved in urecogenesis like uricase and arginase. Excretions of organic-N and urea-N were significantly higher (p < 0.05) in salinity of 42 ‰ than in 18 ‰, whereas, ammonia-N excretion was significantly lower (p < 0.05) in 42 ‰ than in 18 ‰. Hemolymph ammonia, urea and uric acid levels, and epidermis ammonia, urea and uric acid levels were significantly higher (p < 0.05) in salinity of 42 ‰ than in 18 ‰, whereas hepatopancreas ammonia, uric acid and gill uric acid levels were significantly higher (p < 0.05) in 18 ‰. The levels of total nucleotide-related compounds including xanthine and hypoxanthine in the gill were significantly higher (p < 0.05) in salinity of 42 ‰ than in 18 ‰, whereas the levels of total nucleotide-related compounds including xanthine and hypoxanthine in the hepatopancreas were significantly higher (p < 0.05) in 18 ‰. Activities of arginase in the gill, midgut, hepatopancreas and muscle were significantly higher (p < 0.05) in salinity of 42 ‰ than in 18 ‰, and activities of XDH and XOD in the hapatopancreas were significantly higher (p < 0.05) in salinity of 42 ‰ than in 18 ‰.
M. japonicus displays activities of enzymes involved in uricogenesis like XDH and XOD, and activities of emzyme involved in urecogenesis like uricase and arginase. Uricogenesis occurs from the degradation of nucleotide. Activities of XDH and XOD in the hapatopancreas increased in 42 ‰, whereas no significant difference of uricase activity in the hepatopancreas was observed among four salinity levels. An increase of uricogenesis occurs for the shrimp in 42 ‰. Uric acid levels in hemolymph and epidermis increased significantly for the shrimp in 42 ‰. Uric acid produced in the hepatopancreas was transported and accumulated in the epidermis, and removed along with the epidermis at the time of molting. Formation of urea was considered due to uricolysis and hrdrolysis of arginine. The activity of uricase shows no increase for M. japonicus in 42 ‰, however, the activity of arginase increase in 42 ‰. An increase of urea is considered due to the hydrolysis of arginine for the M. japonicus in 42 ‰.
M. japonicus exposed to 0, 0.36 and 1.39 mM nitrite were examined for (1) nitrogenous excretion including ammonia-N excretion, urea-N excretion and organic-N excretion, (2) the levels of nucleotide-related compounds, ammonia, urea and uric acid in tissues, (3) the activities of emzyme involved in uricogenesis like XDH and XOD, and activities of enzymes of involved in urecogenesis like uricase and arginase. Excretions of organic-N, ammonia-N and urea-N increased significantly for the shrimp exposed to 1.39 mM nitrite. Hemolymph urea and epidermis uric acid increased significantly for the shrimp exposed to 1.39 mM nitrite, whereas hemolymph uric acid and epidermis urea decreased significantly for the shrimp exposed to 1.39 mM nitrite. The levels of total nucleotide-related compounds including xanthine and hypoxanthine in the gill increased for the shrimp exposed to 1.39 mM nitrite, whereas the levels of total nucleotide-related compounds including xanthine and hypoxanthine in the hepatopancreas decreased for the shrimp exposed to 1.39 mM nitrite. The activities of arginase, XDH and XOD in the hepatopancreas increased for the shrimp exposed to 1.39 mM nitrite.
In the hapatopancreas, the activities of XDH and XOD of shrimp increased when exposed to elevated nitrite, whereas no significant difference of uricase activity was observed for the shrimp among three treatments. An increase of uricogenesis occurs for the shrimp under the stress of elevated ambient nitrite. An increase of uric acid is considered to be associated with increased oxygen affinity of hemocyanin. Uric acid accumulated in the epidermis is removed along with the epidermis at the time of molting. The activity of uricase shows no increase for the M. japonicus exposed to 1.39 mM nitrite, however, the activity of arginase increase for the shrimp exposed to 1.39 mM nitrite. It is suggested that an increase of urea is through the hydrolysis of arginine for the M. japonicus under the stress of elevated ambient nitrite. Higher activities of arginase in the hepatopancreas and hemolymph, together with increases of hemolymph urea and urea-N excretion indicated an ureogenesis to reduce joint toxicities of metabolic ammonia and incorporated nitrite for the shrimp under the stress of elevated nitrite.
目 錄
中文摘要…………………………………………………………………………..Ⅰ
Abstract ………………………………………………………..…………………..Ⅲ
緒言………………………………………………………………………………..Ⅵ
第一章 文獻整理………………………………………………………………….1
第二章 斑節蝦於高鹽度下其尿酸生成及尿素生成增加之研究…….................12
2-1 摘要……………………………………………………………………….15
2-2 前言……………………………………………………………………….15
2-3 材料與方法……………………………………………………………….18
2-3-1 氮排泄及精胺酸酶活性之研究……………………………..………....18
2-3-2 組織含氮化合物、核苷酸相關化合物及核苷酸代謝相關酵素活性之研究…………………………………..……………………………………22
2-4 結果………………………………………………………………………..27
2-4-1 氮排泄及精胺酸酶活性之研究……………………………..................27
2-4-2 組織含氮化合物、核苷酸相關化合物及核苷酸代謝相關酵素活性之研究…………………………………………………..……………………28
2-5 討論………………………………………………………………………..30
表……………………………………………………………………………….37
圖……………………………………………………………………………….43
第三章 斑節蝦在亞硝酸緊迫下其尿酸生成及尿素生成增加之研究…………..44
3-1 摘要………………………………………………………………………..45
3-2 前言………………………………………………………………..............45
3-3 材料與方法………………………………………………………..............48
3-3-1 氮排泄及精胺酸酶活性之研究………………………..……………….48
3-3-2組織含氮化合物、核苷酸相關化合物及核苷酸代謝相關酵素活性之研究………………………………………………………………….…….49
3-4 結果………………………………………………………………………..50
3-4-1 氮排泄及精胺酸酶活性之研究……………….……………………….50
3-4-2 組織含氮化合物、核苷酸相關化合物及核苷酸代謝相關酵素活性之研究……………………………………………………………….……….51
3-5 討論………………………………………………………………………..53
表………………………………………………………………………………..58
圖………………………………………………………………………………..64
第四章 結論………………………………..……………………………………….65
參考文獻…………………………………………………………………………….70
動物俗名及學名對照表…………………………………………………………….83
<附錄> 本論文已發表部分之全文………………………………………………. .84
Asakawa, A., Yamaguchi, K., Konosu, S., 1981. Taste-active components of the shrimp Pandalus borealis. J. Jap. Soc. Food Sci. Technol. 28, 594-599.
Bate, C.S., 1888. Report on the scientific result of exploring voyage of H.M.S. Challenger during the years 1837-76. Rep. voy. Challenger, Zool. 24, 1-942.
Batrel, Y., Regnault, M., 1985. Metabolic pathways of ammoniogenesis in the shrimp Crangon crangon L: Possible role of glutamate dehydrogenase. Comp. Biochem. Physiol. 82B, 217-222.
Bendschneider, K., Robinson, R.J., 1952. A new spectrometric method for the determination of nitrite in the sea water. J. Mar. Res. 11, 87-96.
Bergmeyer, H.U., Beutler, H.O., 1983. Ammonia. In: Bergmeyer, H.U. (Ed.), Methods of Enzymatic Analysis. Vol. VIII. Metabolites 3: Lipids, Amino acids and related compounds. VCH Verlagsgesellschaft, Weinheim, Germany, pp. 454-461.
Binns, R., 1969. The physiology of the antennal gland of Carcinus maenas. V. Some nitrogenous constituents in the blood and urine. J. Exp. Biol. 51, 41-45.
Binns, R., Peterson, A. J., 1969. Nitrogen excretion by the spiny lobster Fasus dewardsi (Hutton). The role of the antennal gland. Biol. Bull. 136, 47-153.
Boone, W.R., Claybrook, D.L., 1977. The effect of low salinity on amino acid metabolism in the tissues of the common mud crab Panopeus herbstii. Comp. Biochem. Physiol. 57A, 99-106.
Boone, W.R., Schoffeniels, E., 1979. Hemocyanin synthesis during hypo-osmotic stress in the shore crab Carcinus maenas (L.). Comp. Biochem. Physiol. 63B, 207-214.
Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal. Biochem. 72, 248-254.
Brown, G.W., Cohen, P.P., 1959. Comparative biochemistry of urea synthesis. 1. Methods for quantitative assay of urea cycle enzymes in liver. J. Biol. Chem. 234, 1769-1774.
Cameron, J.N., Batterton, C.V., 1978. Antennal gland function in the freshwater blue crab Callinectes sapidus: water electrolyte acid-base and ammonia excretion. J. Comp. Physiol. 123, 143-148.
Cancio, I., Cajaraville, M.P., 1999. Seasonal variation of xanthine oxidoreductase activity in the digestive gland cells of the mussel Mytilus galloprovincialis: A biochemical, histochemical and immunochemical study. Bio. Cell 91, 605-615.
Charmantier-Daures, M., Thuet, P. Charmantier, G., Trilles, J. P., 1988. Tolérances a la salinité et osmorégulation chez les post-larves de Penaeus japonicus et P. chinensis: Effect de la temperature. Aquat. Living Resour. 1, 267-276.
Chen, L.C., 1990. Aquaculture in Taiwan. Fishing News Ltd, London. Great Britain, 273 pp.
Chen, J.C., Chen, J.M., 1997. Arginase specific activity and nitrogenous excretion of Penaeus japonicus exposed to elevated ambient ammonia. Mar. Ecol. Prog. Ser. 153, 197-202.
Chen, J.C., Chen, K. W., 1996. Hemolymph oxyhemocyanin, protein levels, acid-base balance, and ammonia and urea excretion of Penaeus japonicus exposed to saponin at different salinity levels. Aquat. Toxicol. 36, 115-128.
Chen, J.C., Chen, S.F., 1992a. Effects of nitrite on growth and molting of Penaeus monodon juveniles. Comp. Biochem. Physiol. 101C, 453-458.
Chen, J.C., Chen, S.F., 1992b. Accumulation of nitrite in hemolymph of Penaeus japonicus. Mar. Ecol. Prog. Ser. 83, 305-308.
Chen, J.C., Cheng, S.Y., 1995. Changes of oxyhemocyanin and protein levels in the hemolymph of Penaeus japonicus exposed to ambient nitrite. Aquat. Toxicol. 33, 215-226.
Chen, J.C., Cheng, S.Y., 1996. Hemolymph osmolality, acid-balance, and ammonia excretion of Penaeus japonicus Bate exposed to ambient nitrite. Arch. Environ. Contam. Toxicol. 30, 151-155.
Chen, J.C., Chia, P.G., 1996. Hemolymph ammonia and urea and nitrogenous excretions of Scylla serrata at different temperature and salinity. Mar. Ecol. Prog. Ser. 139, 119-125.
Chen, J.C., Tu, C.C., 1990. Acute toxicity of nitrite to larvae Penaeus japonicus. J. Fish. Soc. Taiwan 17, 277-287.
Chen, J.C., Chen, C.T., Cheng, S.Y., 1994. Nitrogen excretion and changes of hemocyanin, protein and free amino acid levels in the hemolymph of Penaeus monodon exposed to ambient ammonia-N at different salinity levels. Mar. Ecol. Prog. Ser. 110, 85-94.
Chen, J.C., Liu, P.C., Lin, Y.T., 1988. Super intensive culture of red-tailed shrimp Penaeus penicillatus. J. World Aquacul. Soc. 19, 127-131.
Cheng, S.Y., Chen, J.C., 1998. Effects of nitrite exposure on the hemolymph electrolyte, respiratory protein and free amino acid levels and water content of Penaeus japonicus. Aquat. Toxicol. 44, 129-139.
Cheng, S.Y., Chen, J.C., 1999. Hemocyanin oxygen affinity, and the farctionation of oxyhemocyanin and deoxyhemocyanin for Penaeus monodon exposed to elevated nitrite. Aquat. Toxicol. 45, 35-46.
Cheng, S.Y., Chen, J.C., 2001. The time-course change of nitrogenous excretion in the Kuruma shrimp Penaeus japonicus following nitrite exposure. Aquat. Toxicol. 51, 443-454.
Cheng, S.Y., Chen, J.C., 2002a. Joint action of elevated ambient nitrite and nitrate on hemolymph nitrogenous compounds and nitrogen excretion of tiger shrimp Penaeus monodon. Comp. Biochem. Physiol. 131C, 303-314.
Cheng, S.Y., Chen, J.C., 2002b. Accumulation of nitrite and nitrate in the tissues of Penaeus monodon exposed to a combined environment of elevated nitrite and nitrate. Arch. Environ. Contam. Toxicol. 43, 64-74.
Cheng, S.Y., Lee, W.C., Chen, J.C., 2004. Increase of uricogenesis in the kuruma shrimp Marsupenaeus japonicus reared under hyper-osmotic conditions. Comp. Biochem. Physiol. Part B (in press).
Cheuk, W.L., Finne, G., Nickelson, R., 1979. Stability of adenosine deaminase and adenosine monophosphate deaminase during ice storage of pink and brown shrimp from the Gulf of Mexico. J. Food Sci. 44, 1625-1628.
Chiou, T.K., Lin, J.F., Shiau, C.Y., 1996. Changes of freshness quality of culture hard clam (Meretrix lusoria) during storage. J. Chin. Nutr. Soc. 21, 95-109.
Chiou, T.K., Lin, J.F., Shiau, C.Y., 1998. Changes in extractive components and glycogen in the edible meat of hard clam Meretrix lusoria during storage at different temperatures. Fish. Sci. 64, 115-120.
Claybrook, D.L., 1983. Nitrogen metabolism. In: Mantel L.H. (Ed.), The Biology of Crustacea, Vol 5, Internal Anatomy and Physiological Regulation. Academic Press. New York, USA, pp. 163-213.
Collins, M.T., Gratzek, J.B., Shotts, E.B., Dawe, D.L., Campbell, L.M., Senn, D.R., 1975. Nitrification and aquatic recirculating system. J. Fish. Res. Bord. Can. 32, 2025-2031.
Dall, W., Hill, B.J., Rothlisberg, P.C., Staples, D.J., 1990. Physiology. In: Blaxter, J.H.S., Southward, A.J. (Eds.), The Biology of the Penaeidae, Academic Press, pp. 159-209.
Dalla Via, G.J., 1986a. Salinity response of the juvenile penaeid shrimp Penaeus japonicus I. Oxygen consumption and estimation of productivity. Aquaculture 55, 297-306.
Dalla Via, G.J., 1986b. Salinity response of the juvenile penaeid shrimp Penaeus japonicus II. Free amino acids. Aquaculture 55, 307-316.
Dillaman, R.M., Greenaway, P., Linton, S.M., 1999. Role of the midgut gland in purine excretin in the robber crab, Birgus latro (Anomura: Coenobitidae). J. Morphol. 241, 227-235.
Dykens, J.A., 1991. Purineolytic capacity and origin of hemolymph urate in carcinus maenas during hypoxia. Comp. Biochem. Physiol. 98B, 579-581.
Eddy, F.B., Williams, E.M., 1987. Nitrite and fresh water fish. Chem. Ecol. 3, 1-38.
Fang, L.S., Tang, C.K., Lee, D.L., Chen, I.M., 1992. Free amino acid composition in muscle and hemolymph of the prawn Penaeus monodon in different salinities. Nippon Suisan Gakkaishi 58, 1095-1102.
Fukuto, J.M., 1995. Nitric oxide synthesis. In: Walsh P.J., Wright P.A. (Eds.), Nitrogen metabolism and excretion. CRC Press. Boca Raton, F.L., USA, pp. 305-328.
Furusho, S., Umezaki, Y., Ishida, K., Honda, A., 1988. Changes in the concentrations of ATP-related compounds and lactic acid in muscle of liver prawn Penaeus japonicus during storage in sawdust. Nippon Suisan Gakkaishi 54, 1209-1212.
Gilles, R., 1977. Effects of osmotic stresses on the protein concentration and pattern on Eriocheir sinensis blood. Comp. Biochem. Physiol. 56 A, 109-114.
Gilles, R., Pequeux, A., 1983. Interaction of chemical and osmotic regulation with the environment. In: Vernberg, F. J., Vernberg, W. B. (Eds.), The Biology of Crustacea, Vol 8, Environmental Adaptation. Academic Press, New York, pp. 109-177.
Greenaway, P., 1991. Nitrogenous excretion in aquatic and terrestrial crustceans. Mem. Queen. Mus. 31, 215-227.
Greenaway, P., Morris, S., 1989. Adaptations to a terrestrial existence by the robber crab, Birgus latro L. III. Nitrogenous excretion. J. Exp. Biol. 143, 333-346.
Haberfield, E.C., Haas, L. W., Hammen, C.S., 1975. Early ammonia release by a polychaete Nereis virens and a crab Carciunus maenas in diluted sea water. Comp. Biochem. Physiol. 52A, 501-503.
Hanlon, D.P., 1975. The distribution of arginase and urease in marine invertebrates. Comp. Biochem. Physiol. 52B, 261-264.
Hayashi, T., Yamaguchi, K., Konosu, S., 1981. Sensory analysis of taste-active components in the extract of snow crab meat. J. Food Sci. 46, 479-483, 493.
Horne, F.R., 1968. Nitrogen excretion in crustacea. I. The herbivorous land crab Cardisoma guanhumi Latreille. Comp. Biochem. Physiol. 26, 687-695.
Hrabak. A., Temesi, A., Csuka, I., Antoni, F., 1992. Inverse relation in the de novo arginase synthesis and nitric production in murine and rat pertioneal macrophages in long-term culture in vitro. Comp. Biochem. Physiol. 103A, 839-845.
Huang, C.Y., Chen, J.C., 2001. Effects of emersion on the haemolymph metabolites of the Japanese lobster, Panulirus japonicus (decapoda, palinuridea). Crustaceana 74, 1041-1058.
Huggins, A.K., Amrit, D., Haworth, C., 1975. Biochemical changes in crustaceans and other species associated with alterations in environmental salinity. Biochem. Soc. Trans. 3, 669-671.
Jensen, F. B., 1995. Uptake and effects of nitrite and nitrate in animals. In: Walsh, P.J., Wright, P. (Eds.), Nitrogen Metabolism and Excretion. CRC Press. Boca Raton, FL, USA, pp. 289-303.
Jensen, F.B., 1996. Uptake, elimination and effects of nitrite and nitrate in freshwater crayfish (Astacus astacus). Aquat. Toxicol. 34, 95-104.
Jeuniaux, C., Florkin, M., 1961. Modification de l’excrétion azotée du crabe chinois au cours de l’adaptation osmotique. Arch. Int. Physiol. Biochim. 69, 385-386.
Kanazawa, A., Teshima, S.I., 1981. Essential amino acids of the prawn. Bull. Jap. Soc. Sci. Fish. 47, 1375-1377.
Krishnamoorthy, R.V., Srihari, K., 1973. Changes in the excretory patterns of the fresh-water field crab Paratelphusa hydrodromous upon adaptation to higher salinities. Mar. Biol. 21, 341-348.
Lallier, F. H., Walsh, P. J., 1991. Activities of uricase, xanthine oxidase, and xanthine dehydrogenase in the hepatopancreas of aquatic and terrestrial crabs. J. Crust. Biol. 11, 506-512.
Lallier, F., Truchot, J.P. 1989. Modulation of hemocyanin oxygen-affinity by L-lactate anad urate in the prawn Penaeus japonicus. J. Exp. Biol. 147, 133-146.,
Lee, C.Y., Zou, H.S., Yau, S.M., Ju, Y.R., Liau, C.S., 2000. Nitric oxide synthase activity and immunoreactivity in the crayfish Procambarus clarkii. Neuroreport 11, 1273-1276.
Lee, W.C., Chen, J.C., 2003. Hemolymph ammonia, urea and uric acid levels and nitrogenous excretion of Marsupenaeus japonicus at different salinity levels. J. Exp. Mar. Biol. Ecol. 288, 39-49.
Lee, W.C., Chen, J.C., 2004. Nitrogenous excretion and arginase specific activity of kuruma shrimp Marsupenaeus japonicus exposed to elevated ambient nitrite. J. Exp. Mar. Biol. Ecol. (in press).
Liao, I.C., Chao, N.H., 1983. Development of prawn culture and its related studies in Taiwan. In: Rogers, G. L., Day, R., Lim, A. (Eds.), Proceedings of the International Warm Water Aquaculaure Conference (Crustaceans). Bringham Young University, Hawaii Campus, Laie, HI, pp.129-142.
Linton, S.M., Greenaway, P., 1997a. Urate deposits in the gecarcind land crab Gecarcoidea natalis are synthesized de novo from excess dietary nitrogen. J. Exp. Biol. 2000, 2347-2354.
Linton, S.M., Greenaway, P., 1997b. Intracellular purine deposits in the Gecarcinid land crab Gecarcoidea natalis. J. Morphol. 231, 101-110.
Linton, S.M., Greenaway, P., 1998. Enzymes of urate synthesis and catabolism in the Gecarcind land crab Gecarcoidea natalis. Exp. Biol. Online, 3:5.
Liras, A., Rotllan, P., Llorente, P., 1992. De novo purine biosysthesis in the crustacean Artemia: influence of salinity and geographical orgin. J. Comp. Physiol. 162B, 263-266.
Mangum, C.P., Silverthorn, S.U., Harris, J.L., Towle, D.W., Krall, A.R., 1976. The relationship between blood pH, ammonia excretion, and adaptation to low salinity in the blue crab, Callinectes sapidus. J. Exp. Zool. 195, 129-136.
Millamena, O.M., Casalmir, C.M., Subosa, D.F., 1991. Performance of recirculating systems for prawn hatchery and broodstock maturation tanks. Aquacult. Eng. 10, 161-171.
Mollitor, A., 1937. Beitrage zur Untersuchung des Exkretstoffwechsels und der Exkretion von Eriocheir sinensis H. Milne-Edwards. Zoo. Tahr., Abt. Allg. Zoo. und Phy. der Tiere 57, 323-354.
Morris, S., Greenaway, P., McMahon, B.R., 1996. Air breathing by the purple shor crab, Hemigrapsus nudus (Dana). 4. Aquatic hypoxia as an impetus for emersion? Oxygen uptake, respiratory gas transport, and acid-base state. Physiol. Zool. 69, 864-886.
Nelson, S.G., Armstrong, D.A., Knight, A.W., Li, H.W., 1977. The effects of temperature and salinity on the metabolic rate of juvenile Macrobrachium rosenbergii (Crustacea: Palaemonidae). Comp. Biochem. Physiol. 56A, 533-537.
Nener, J.C., 1988. Varibale and constrained features of ornithine-urea cycle. Can. J. Zool. 66, 1069-1077.
Noguichi, T., Takada, Y., Fujiwara, S., 1979. Degradation of urate to urea and glyocylate in peroxisome. J. Biol. Chem. 254, 5272-5275.
O'Donnell, M.J., Wright, J., 1995. Nitrogen excretion in terrestrial crustaceans. In: Walsh, P. J., Wright, P. A. (Eds.), Nitrogen Metabolism and Excretion, CRC Press, Boca Raton, FL, pp. 105-118.
Okuma, E., Abe, H., 1994. Total-Damino and other free amino acids increase in the muscle of crayfish during seawater accumulation. Comp. Biochem. Physiol. 109A, 191-197.
Paterson, B.D., Goodrick, G.B., Grauf, S.G., 1995. Inosine monophosphate (IMP) concentration in shrimp flesh cannot be used as index of “freshness” when comparing shrimp that have been harvested in different ways. J. Aquat. Food Proc. Technol. 4, 59-74.
Pequeux, A., Gilles, R., 1981. Na+ fluxes across isolated perfused gills of the chinese crab Eriocheir sinensis. J. Exp. Biol. 92, 173-186.
Pérez Farfante, I., Kensley, B.F., 1997. Penaeoid and sergestoid shrimps and prawns of the world, keys and diagnoses for the Families and Genera. Mém. Mus. Nat. Hist. Nat. 175, 1-233.
Rahmatullah, M., Boyde, T.R.C., 1980. Improvements in the determination of urea using diacetyl monoxime; methods with and without deprotenisation. Clin. Chim. Acta. 107, 3-9.
Reddy, P.S., Bhagyalakshmi, A., 1992. Fenitrothion-induced alterations in ammonia metabolism in the crab, Oziotelphusa senex senex Fabricius. Pestic. Sci. 35, 249-254.
Reddy, P.S., Bhagyalakshmi, A., Ramamurthi, R., 1994. Effects of sublethal concentration of methyl parathion on aspects of nitrogen metabolism in Oziotelphusa senex senex. Fresenius Environ. Bull. 3, 55-62.
Regnault, M., 1987. Nitrogen excretion in marine and freshwater crustacea. Biol. Rev. 62, 1-24.
Regnault, M., 1989. Glutamate dehydrogenase (GDH) in the cheliped muscle of the crab Cancer pagurus L. effect of a prolonged starvation. Comp. Biochem. Physiol. 92B, 721-725.
Regnault, M., 1992. Effect of air exposure on nitrogen metabolism in the crab Cancer pagurus. J. Exp. Zool. 264, 372-380.
Regnault, M., Batrel, Y., 1987. Glutamate dehydrogenase of the shrimp Crangon crangon L. Effects of shrimp weight and season upon its activity in the oxidative and reductive function. Comp. Biochem. Physiol. 86B, 525-530.
Richard, P., Ceccaldi, H.J., 1975. Variations des caractéristiques pondérales et des compositions amino-acide et protéique pendant le développement embronnaire de Palaemon serratus. Actes Colloq. CNEXO 4, 203-212.
Rouleau, C., Pellerin-Massicotte, J., Pelletier, E., 1991. Some properties of malic enzyme and glutamate dehydrogenase activities in the shrimp Pandalus borealis from the Saguenay Fjord (Quebec, Canada). Comp. Biochem. Physiol. 99B, 903-909.
Sharma, M., 1968. Studies on the sources and mechanisms of increased urea production by Orconectes rusticus under osmotic stress. Comp. Biochem. Physiol. 24, 55-60.
Sharma, M.L., Neveu, M.C., 1971. Studies on the role of ornithine cycle and purine catabolism in urea biosynthesis in the freshwater crayfish Orconectes rusticus. Comp. Biochem. Physiol. 40B, 863-870.
Solorzano, L., 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr. 14, 799-801.
Solorzano, L., Sharp, J.H., 1980. Determination of total dissolved nitrogen in natural water. Limnol. Oceanogr. 25, 751-754.
Spaargaren, D.H., 1985. The significance of nitrate in the nitrogenous excretion of Carcinus maenas. Netherl. J. Sea. Res. 19, 119-124.
Spaargeren, D.H., Richard, P., Ceccaldi, H.J., 1982. Excretion of nitrogenous products by Penaeus japonicus Bate in relation to environmental osmotic conditions. Comp. Biochem. Physiol. 72A, 673-678.
Sreenivasula, R.P., Bhagyalakshmi, A., 1994. Changes in oxidative metabolism in selected tissues of the crab Scylla serrata in response to cadmium toxicity. Ecotoxicol. Environ. Saf. 29, 255-164.
Suwetja, I.K., Hori, K., Miyazawa, K., 1989. Changes in Content of ATP-Related Compounds, Homarine, and Trigonelline in Marine Invertebrates during Ice Storage. Nippon Suisan Gakkaishi 55, 559-566.
Tacon, A.G.J., Cody, J.J., Conquest, L.D., Divakaran, S., Forster, L.P., Decamp, O.E., 2002. Effect of culture system on the nutrition and growth performance of pacific white shrimp Litopenaeus vannamei (Boone) fed different diets. Aquacul. Nutr. 8, 121-137.
Tayeh, M.A., Marletta, M.A., 1989. Macrophage oxidation of L-arginine to nitric oxide, nitrite and nitrate. Tetrhhydrobiopterin is required as cofactor. J. Biol. Chem. 264, 19654-19658.
Teshima, S., Alam, M.S., Koshio, S., Ishikawa, M., Kanazawa, A., 2002. Assessment of requirement values for essential amino acids in the prawn, Marsupenaeus japonicus (Bate). Aquacult. Res. 33, 395-402.
Thabrew, M.I., Poat, P.C., Munday, K.A., 1971. Carbohydrate metabolism in Carcinus maenas gill tissue. Comp. Biochem. Physiol. 40B, 531-541.
Whitely, N.M., Taylor, E.W., 1990. The acid-base consequences of aerial exposure in the lobster, Homarus gammarus (L.) at 10 and 20 °C. J. Therm. Biol. 15, 47-56.
Wood, C.M., 1993. Ammonia and urea metabolism and excretion. In: Evans, D. H., (Ed.), The Physiology of Fishes. CRC Press, Boca Raton, FL, pp. 379-425.
Wood, E.D., Armstrong, F.A., Richards, F.A., 1967. Determination of nitrate in sea water by cadmium-copper reduction to nitrite. J. Mar. Biol. Assoc. UK 47, 23-31.
Yeh, C.P.S., Nickelson, R., Finne, G., 1978. Ammonia-producing enzymes in white shrimp tails. J. Food Sci. 43, 1400-1401, 1404.
Yu, H.P., Chan, T.Y., 1986. The illustrated penaeoid prawns of Taiwan. Southern Materials Center Inc, Taipei.
中華民國臺灣地區漁業年報, 1990、1991、1992、2003。行政院農業委員會漁業署。
游祥平、陳天任,1986。原色臺灣對蝦圖鑑。南天書局,pp.88-89。
廖一久,1969。斑節蝦攝餌之研究。中國水產 197,17-18。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top