跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/15 01:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭嘉韋
研究生(外文):Chia-Wei Hsiao
論文名稱:飼料中添加不同甲酸鹽含量對海鱺及白蝦成長與活存及體組成之影響
論文名稱(外文):The effects of dietary supplement of potassium diformate on the growth, survival and body composition of cobia, Rachycentron canadum and white shrimp, Litopenaeus vannamei
指導教授:沈士新沈士新引用關係
指導教授(外文):Shyn-Shin Sheen
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:117
中文關鍵詞:二甲酸甲鹽海鱺海鱺白蝦白蝦脂肪酸肝胰臟
外文關鍵詞:K-diformateCobiaRachycentron canadumWhite shrimpLitopenaeus vannameiFatty acidHepatopancreas
相關次數:
  • 被引用被引用:1
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘要

本論文分成二組實驗:(一) 飼料中添加不同K-diformate含量(0、0.5、1、1.5 g/kg);(二) 飼料中添加不同K-diformate含量(0、3、6、9 g/kg),探討K-diformate 對海鱺成長、活存與體組成的影響。
實驗一魚體初重 6.9±0.1g,以魚粉為主要蛋白源,鱈魚肝油/玉米油 (2:1)為油脂來源,配製成4組不同K-diformate含量之實驗飼料。海鱺經餵食實驗飼料8週,各處理組在成長和活存並無統計上的差異,但以餵食含0.5 g/kg K-diformate 飼料處理組有最佳的成長及FCR。海鱺肌肉組織之水分、灰分、粗蛋白與粗脂質在各處理組並無差異,肝臟粗脂質則隨著飼料K-diformate 含量增加而增高的趨勢。海鱺肌肉中性油脂脂肪酸主要以16:0、18:1與18:2為主,18:1的含量有隨K-diformate增加而降低的趨勢;肌肉極性油脂脂肪酸主要以13:0、16:0、18:1、22:6n-3為主;肝臟中性油脂脂肪酸主要以16:0、18:1為主,18:1、20:5n-3含量有因添加K-diformate而增高;肝臟極性油脂脂肪酸主要以16:0、18:1為主,22:6n-3含量有著飼料K-diformate含量增加而增高的趨勢。
實驗二魚體初重 28±1g,以魚粉為主要蛋白源,鱈魚肝油/玉米油 (2:1)為油脂來源,另添加K-diformate,配製成4組不同K-diformate含量之實驗飼料。海鱺經餵食實驗飼料4週,各處理組在成長與活存並無統計上的差異,但以餵食含3 g/kg K-diformate 飼料處理組有最佳的成長及FCR,以9 g/kg處理組最差。海鱺肌肉組織之水分、灰分、粗蛋白與粗脂質在各處理組並無差異,肝臟粗脂質則隨著飼料K-diformate 含量增加而增高的趨勢。


摘要

本論文分成二組實驗:(一) 飼料中添加不同K-diformate含量(0、0.5、1、1.5 g/kg);(二) 飼料中添加不同K-diformate含量(0、3、6、9 g/kg),探討K-diformate 對白蝦成長、活存與體組成的影響,重複實驗二次。
實驗一白蝦初重 0.018±0.001g,以魚粉為主要蛋白源,鱈魚肝油/玉米油 (2:1)為油脂來源,配製成4組不同K-diformate含量之實驗飼料。白蝦經餵食實驗飼料9週,以餵食含1.5 g/kg K-diformate 飼料的白蝦成長最好,與0 g/kg處理組有顯著差異,但與其他處理組無顯著差異。0.5 g/kg處理組有最高的活存率(96.7 %),以0 g/kg處理組活存最低(85 %),白蝦肌肉組織之水分、灰分、粗蛋白與粗脂質在各處理組並無差異。
實驗二白蝦初重 0.007±0g,以魚粉為主要蛋白源,鱈魚肝油/玉米油 (2:1)為油脂來源,配製成4組不同K-diformate含量之實驗飼料。白蝦經餵食實驗飼料6週,各處理組在成長並無統計上的差異,以餵食含6 g/kg K-diformate 飼料處理組有最佳的成長,9 g/kg 處理組成長最差。3 g/kg處理組有最高的活存率(100 %),以9 g/kg處理組活存最低(92 %),白蝦肌肉組織之水分、灰分、粗蛋白與粗脂質在各處理組並無差異,肝胰臟粗脂質含量以3、6 g/kg處理組較高。白蝦肌肉中性油脂脂肪酸主要以13:0及16:0為主,EPA及DHA含量有隨飼料中添加K-diformate含量增加而增高的趨勢;肌肉極性油脂脂肪酸主要以16:0、18:1、20:5n-3及22:6n-3為主;肝胰臟中性油脂脂肪酸主要以13:0、16:0、18:1n-9及18:2n-6為主;肝胰臟極性油脂脂肪酸主要以13:0、16:0、18:1n-9為主,EPA及DHA含量有隨飼料中添加K-diformate含量增加而增高的趨勢;重複此實驗,白蝦初重 0.006±0.001g,經餵食實驗飼料9週,各處理組在成長並無統計上的差異,以餵食含3 g/kg K-diformate 飼料處理組有最佳的成長,9 g/kg 處理組成長最差。各處理處理組活存率在83.3~91.7,白蝦肌肉組織之水分、灰分、粗蛋白與粗脂質在各處理組並無差異。
Abstract

Two experiments were conducted to investigate the effects of K-diformate on the weight gain, survival and chemical compositions of muscle and liver of cobia, Rachycentron canadum.
In the first trial, triplicate groups of cobia (6.9±0.1g initial body weight) were fed diets including four supplemental K-diformate levels (0, 0.5, 1 and 1.5 g/kg). Fish meal was used as a dietary protein and the mixture of 2:1 cod liver oil/corn oil used as a dietary lipid. No significant differences were found among the weight gain and survival of cobia fed different experimental diets in the 8-week feeding period. However, cobia fed a diet containing 0.5 g/kg K-diformate had the best weight gain (878 %) and food conversion ratio (2.56). The moisture, ash, crude protein and crude lipid content of cobia muscle were no significant difference among all treatments, but the crude lipid of liver of cobia was increased with increasing dietary K-diformate level. The neutral lipid of muscle of cobia contained high levels of 16:0, 18:1 and 18:2; the 18:1 decreased with increasing dietary K-diformate level. The major fatty acids of polar lipid of muscle of cobia were 13:0, 16:0, 18:1 and 22:6n-3. The neutral lipid of liver of cobia fed diets containing K-diformate had high concentration of 18:1 and 20:5n-3 . The 22:6n-3 of polar lipid of liver of cobia were increased with increasing dietary K-diformate level.
In the second trial, triplicate groups of cobia (28±1g initial body weight) were fed diets including four supplemental K-diformate levels ( 0, 3, 6 and 9 g/kg) . Fish meal was used as a dietary protein and the mixture of 2:1 cod liver oil/corn oil used as a dietary lipid. No significant differences were found among the weight gain and survival of cobia fed different experimental diets in the 4-week feeding period. However, cobia fed a diet containing 3 g/kg K-diformate had the best weight gain (110 %) . The moisture, ash, crude protein and crude lipid content of cobia muscle were no significant difference among all treatments, but the crude lipid of liver of cobia was increased with increasing dietary K-diformate level.


Abstract

Two experiments were conducted to investigate the effects of K-diformate on the weight gain, survival and chemical compositions of muscle and hepatopancreas of white shrimp, Litopenaeus vannamei.
In the first trial, triplicate groups of white shrimp (0.018±0.001g initial body weight) were fed diets containing four supplemental K-diformate levels (0, 0.5, 1 and 1.5 g/kg). Fish meal was used as a dietary protein and mixture of 2:1 cod liver oil/corn oil used as a dietary lipid. White shrimp fed diets containing 0.5, 1, 1.5 g/kg K-diformate had significantly higher weight gain than the diet without K-diformate supplemented in the 9-week feeding period. Survival of white shrimp fed the diets containing 0.5, 1, 1.5 g/kg K-diformate were above 90%. The moisture, ash, crude protein and crude lipid content of white shrimp muscle were not significant difference among all treatments.
In the second trial, triplicate groups of white shrimp (0.007±0g initial body weight) were fed diets containing four supplemental K-diformate levels (0, 3, 6 and 9 g/kg). No significant differences were found among the weight gain of white shrimp fed different experimental diets in the 6-week feeding period. However, white shrimp fed a diet containing 6 g/kg K-diformate had the highest weight gain. Survival of white shrimp fed treatment groups were above 90%. The moisture, ash, crude protein and crude lipid content of white shrimp muscle were not significant difference among all treatments. The neutral lipid of muscle of white shrimp contained high levels of 13:0, 16:0 and 18:2 in experiment 1 and 2. The 20:5n-3(EPA) and 22:6n-3(DHA) levels of neutral lipid of muscle of white shrimp were increased with increasing dietary K-diformate level in experiment 1 and 2. The major fatty acids of polar lipid of muscle of white shrimp were 16:0, 18:1, EPA and DHA in experiment 1 and 2. The neutral lipid of hepatopancreas of white shrimp contained high levels of 13:0, 16:0, 18:1 and 18:2 in experiment 1and 2. However, polar lipid of hepatopancreas of white shrimp contained high levels of 13:0, 16:0 and 18:1 in experiment 1 and 2. The EPA and DHA levels of polar lipid of hepatopancreas of white shrimp were increased with increasing dietary K-diformate level in experiment 1 and 2.
To reconfirm the result of the second trial, triplicate groups of white shrimp (0.006±0.001g initial body weight) were also fed diets containing four supplemental K-diformate levels (0, 3, 6 and 9 g/kg). There were not significant differences among the weight gain of white shrimp fed different experimental diets in the 9-week feeding period. However white shrimp fed a diet containing 3 g/kg K-diformate had the highest weight gain. Survival of white shrimp fed the diets containing 0 and 3g/kg K-diformate were above 90%. The moisture, ash, crude protein and crude lipid content of white shrimp muscle were not significant difference among all treatments.
------------目 錄-----------
中文摘要-------------------------------------------------------------------------I
英文摘要------------------------------------------------------------------------III
表目錄----------------------------------------------------------------------------V
圖目錄--------------------------------------------------------------------------VII

前言--------------------------------------------------------------------------------1
文獻整理-------------------------------------------------------------------------3
一、 海鱺之分類--------------------------------------------------------3
二、 海鱺之生態特性--------------------------------------------------3
三、 海鱺的繁、養殖--------------------------------------------------4
四、 有機酸--------------------------------------------------------------6
材料方法-------------------------------------------------------------------------8
一、 實驗動物-----------------------------------------------------------8
二、 實驗系統-----------------------------------------------------------8
三、 實驗條件-----------------------------------------------------------8
四、 實驗飼料之配製--------------------------------------------------9
五、 魚體組織樣品的處理--------------------------------------------9
六、 分析項目----------------------------------------------------------10
1. 一般成分分析-----------------------------------------------10
2. 脂肪酸組成的測定與鑑定--------------------------------11
七、 統計分析----------------------------------------------------------13
結果-------------------------------------------------------------------------------14
實驗一-----------------------------------------------------------------------14
實驗二-----------------------------------------------------------------------18
討論-------------------------------------------------------------------------------20
結論-------------------------------------------------------------------------------23
參考文獻------------------------------------------------------------------------24
圖表-------------------------------------------------------------------------------29


------------目 錄-----------
中文摘要-------------------------------------------------------------------------I
英文摘要------------------------------------------------------------------------III
表目錄----------------------------------------------------------------------------V

前言--------------------------------------------------------------------------------1
文獻整理-------------------------------------------------------------------------3
一、 白蝦之分類--------------------------------------------------------3
二、 白蝦之生態特性--------------------------------------------------3
三、 白蝦的繁、養殖--------------------------------------------------4
材料方法-------------------------------------------------------------------------6
一、 實驗動物-----------------------------------------------------------6
二、 實驗系統-----------------------------------------------------------6
三、 實驗條件-----------------------------------------------------------6
四、 實驗飼料之配製--------------------------------------------------7
五、 蝦體組織樣品的處理--------------------------------------------8
六、 分析項目-----------------------------------------------------------8
1. 一般成分分析------------------------------------------------8
2. 脂肪酸組成的測定與鑑定---------------------------------9
七、 統計分析----------------------------------------------------------11
結果-------------------------------------------------------------------------------12
實驗一-----------------------------------------------------------------------12
實驗二-----------------------------------------------------------------------16
討論-------------------------------------------------------------------------------21
結論-------------------------------------------------------------------------------25
參考文獻------------------------------------------------------------------------26
圖表-------------------------------------------------------------------------------31
參考文獻

古鎮鈞,1999。海鱺的病害。研商海鱺養殖產業發展方向座談會。箱網養殖研討會。
沈士新,1999。海鱺的飼料研究。研商海鱺養殖產業發展方向座談會。箱網養殖研討會。
沈世傑,1993。台灣魚類誌。329頁。
沈亮廷,2003。飼料中不同蛋白質量與蛋白質與能量比對海鱺成長與體組成之影響。國立台灣海洋大學水產養殖學系碩士學位論文,69 頁。
邵廣昭,陳正平,沈世傑,1992。墾丁國家公園海堿魚類圖鑑。內政部營建屬墾丁國家公園管理處出版,427頁。
邵廣昭,1996。台灣常見魚介貝類圖說(下),台灣省漁業局。
張賜玲,謝介士,周瑞良及蘇茂森,1999。海鱺養殖技術簡介。養魚世界,No. 270. 14-26。
楊文福,2002。飼料中不同油脂含量與來源對海鱺成長與體組成之影響。國立台灣海洋大學水產養殖學系碩士學位論文,102 頁。







AOAC (Association of Official Analysis Chemists), 1984. Official Methods of Analysis, 14th edition, AOAC, Arlington, VA, 1141 pp.
Berchieri, A., Jr., Barrow, P.A., 1996. Reduction in incidence of experimental fowl thyphoid by incorporation of a commercial formic acid preparation (Bio-AddTm) into poultry feed. Poultry Science 75, 339-341.
Bitman, J., Wood, L., Melta, N.R., Hamosh, P., Hamosh, M., 1984. Comparison of the phospholipid composition of breast milk from mothers of term and preterm infants during lactation. Am. J. Clin. Nutr. 40, 1103-1119.
Brenner, R.R., Vazza, D.V., Petomas, M.E., 1963. Effect of a fat-free diet and of different dietary fatty acid ( palmitate, oleate and linoleate ) on the fatty acid composition of freshwater fish lipid. J. Lipid Res. 3, 341-345.
Ditty, J.G., Shaw, R.F., 1992. Larval development, distribution, and ecology of cobia, Rachycentron canadum, (Family Rachycentridae) in the northern Gulf of Mexico. Fish. Bull. 90, 668-677.
Eideleburger, U., 1997. Optimierung der Futterqualität ist nur ein Teilaspekt. In: Schweinewelt, Nr. Januar 18-21.
Folch, J., Lees, M., Stanely, C.H.S., 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 266, 477-509.
Franks, J.S., Garber, N.M., Warren, J.R., 1996. Stomach contents of juvenile cobia, Rachycentron canadum, from the northern Gulf of Mexico. Fish. Bull. 94, 374-380.
Franks, J.S., Warren, J.R., Buchanan, M.V., 1999. Age and growth of cobia, Rachycentron canadum, from the northeastern Gulf of Mexico. Fish. Bull. 97, 459-471.
Gabert, V.M., Sauer W.C., 1994. The effects of supplementing diets for weanling pig with organic acids. A review. J. Animal Feed Sci. 3, 73-87.
Hinton, A. Jr., Buhr, R.J., Ingram, K.D., 2000. Reduction of Salmonella in the crop of broiler chickens subjected to feed withdrawal. Poultry Science 79, 1566-1570.
Iba, A.M., Berchier, A. Jr., 1995. Studies on the use of a formic acid-propionic acid mixture (Bio-addTM) to control experimental Salmonella infection in broiler chickens. Avian Pathology 24, 303-311.
Johnson, G.D., 1984. Percoidei: Development and relationships. In: Moser, H.G., Richards, W.J., Cohen, D.M., Fahay, M.P., Kendall, A.W. Jr., Richardson, S.L. (eds), Ontogeny and systematics of fishes, Amer. Soc. Ichthy. Herp., Spec. Publ., pp. 464-498.
Joyner, S.P., 1985. SAS/STAT Guide for Personal Computers. Statistical Analysis System Institute, Cary, NC, USA.
Kirchgessner, M., Paulicks, B.R., Roth, F.X., 1997. Effects of supplementation of Diformate complexes (FormiTM LHS) on growth and careass performance of piglets and fattening pig in response to application time. Agribiol. Res. 50, 1-7.
Kirchgessner, M., Roth, F.X., 1988. Ergotrope effect durch organische Säuren in der Ferkelaufzucht und Sweinemast. Übersicht. Tierenährng 16, 93-108.
Melcalfe, L.D., Schmitz, A.A., 1961. The rapid preparation of fatty acid esters for gas chromatographic analysis. Anal. Chem. 33, 363-365.
Mosenthin, R., Sauer, W.C., Ahrens, F., de Lange, C.F.M., Bornholt, U., 1992. Effect of dietary supplement of propionic acid, siliceous earth or a combination of these on the energy, protein and amino acid digestibilites and concentrations of microbial metabolites in the digestive tract of growing pigs. Anim. Feed Sci. Technol. 37, 245-255.
Mroz, Z., Jongbloed, A.W., Partanen, K., Vreman, K., Kemme, P.A., Kogut, J., 2000. The effects of calcium benzoate in diets with or without organic acids or dietary buffering capacity, apparent digestibility, retention of nutrients, and manure characteristics in swine. J. Animal Sci. 78, 2622-2632.
Mugrditchian, D.S., Hardy, R.W., Iwaoka, W.T., 1981. Linseed oil and animal fat as alternative lipid sources in dry diet for Chinook salmon (Oncorhynchus tshawytscha) . Aquaculture 112, 161-172.
National Research Council (NRC), 1983. Nutrient requirements of warmwater fishes and shellfishes. National Academy Press, Washington, DC, 102 pp.
Øverland, M., Granli, T., Kjos, N.P., Fjetland, O., Steien, S.H., Stokstad, M., 2000. Effect of dietary formats on growth performance, carcass traits, sensory quality, intestimal microflora, and stomach alterations in growth-finishing pig. J. Animal Sci. 78, 1875-1884.
Partanen, K., Mroz, Z., 1999. Organic acids for performance enhancement in pig diets. Nutri. Res. Rev. 12, 117-145
Partanen, K., Siljander-Rasi, H., Alaviuhkola, T., Suomi, K., Fossi, M., 2002. Performance of growing-finishing pig fed medium- or high-fibre diet supplemented with avilamycin, formic acid or formic acid-sorbate blend. Livestock Production Science 73, 139-152.
Partanen, K., Valaja, J., Siljander-Rasi, H., Jalava, T., Panula, S., 1998. Effects of carbadox or formic acid and diet type on ileal diegestion of amino acids by pigs. J. Animal Feed Sci. 7, 199-203.
Roth, F.X., Kirchgessner, M., 1998. Organic acid as feed additives for young pig: Nutritional and gastrointestinal effects. J. Animal Feed Sci. 7, 25-33.
Russell, J.B., Diez-Gonzales, F., 1998. The effects of fermentation acids on bacterial growth. Adv. Micr. Phys. 39, 205-234.
Siljander-Rasi, H., Alaviuhkola, T., Suomi, K., 1998. Carbadox, formic acid and potato fibre as feed additives for growing pig. J. Animal Feed Sci. 7, 205-209.
Tacon, A.G.J. 1990. Standard methods for the nutrition and feeding of farmed fish and shrimp. Vol. 1. The essential nutrients, Argent Laboratories Press. Redmond, Washington, U.S.A., 208 pp.
Thompson, J.L., Hinton, M., 1997. Antibacterial activity of formic acid propionic acid in the diet of hens on salmonellas in the crop. Brit. Poul. Sci. 38, 59-65.
Tuncer, H., Harrell, R.M., 1992. Essential fatty acid nutrition of larval striped bass (Morone saxatilis) and palmetto bass (M. saxatilis × M. chrysops). Aquaculture 101, 105-121.
Watanabe, T., 1982. Lipid nutrition in fish. Comp. Biochem. Physiol. 73(B), 3-15.



參考文獻

李安定、陳天任、游祥平、廖一久,1999。綜述台灣的對蝦類:其地理分部及學名的更选。國立台灣博物館年刊。 42: 93-126
林明男、丁雲源、曾寶順、劉熾揚,1989。塭種蝦培育研究-白蝦第三子代之育成。J. Fish. Soc. Taiwan, 17(2):125-132。
林雅真,1996。飼料中不同油脂來源及n-3 或n-6多不飽和脂肪酸的含量對幼蟳成長與活存之影響。國立台灣海洋大學水產養殖學系碩士學位論文,86 頁。
陳秀男、沈士新、冉繁華、林清龍、王俊順、黎錦超,2000。蝦類養殖技術實用大全,224頁。觀賞魚雜誌社。
黃淑萍,2003。飼料蛋白質來源及量與P/E比值對白蝦成長之影響。國立台灣海洋大學水產養殖學系碩士學位論文,65頁。
曾寶順,2002。白腳蝦種蝦育成飼料之開發—添加不同油脂含量的影響。國立台灣海洋大學水產養殖學系碩士學位論文,113頁。









AOAC (Association of Official Analysis Chemists), 1984. Official Methods of Analysis, 14th edition, AOAC, Arlington, VA, 1141 pp.
Berchieri, A., Jr., Barrow, P.A., 1996. Reduction in incidence of experimental fowl thyphoid by incorporation of a commercial formic acid preparation (Bio-AddTm) into poultry feed. Poul. Sci. 75, 339-341.
Bitman, J., Wood, L., Melta, N.R., Hamosh, P., Hamosh, M., 1984. Comparison of the phospholipid composition of breast milk from mothers of term and preterm infants during lactation. Am. J. Clin. Nutr. 40, 1103-1119.
Boone, L., 1931. Anomuran crustacea form panama and canal zone. Bull. Ame. Mus. Natu. Histo. 63 (2), 137-189.
Castell, J.D., Boghen A.D., 1979. Fatty acid metabolism in juvenile lobsters (Homarus americanus) fed a diet low in methionine and histidine. Proc. World Maricult. Soc. 10, 720-727.
Chen, H.Y., Tsai, R.H., 1986. The dietary effectiveness of Artemia nauplii and microencapsulated foods for postlarval, Penaeus monodon. In Chuang, J.L. and Shiau, C.Y., (Eds), Research and Development of Aquatic Animal Feed in Taiwan. Vol. I. F.S.T. Monograph Series No. 5. Fisheries Society of Taiwan. pp. 73-79.
Folch, J., Lees, M., Stanely, C.H.S., 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 266, 477-509.
Gonzáleaz-Félix, M.L., Lawrence, A.L., Gatlin, D.M. III Perez-Velazquez, M., 2002. Growth, survival and fatty acid composition of juvenile Litopenaeus vannamei fed different oils in the presence and absence of phospholipids. Aquaculture 205, 325-343.
Iba, A.M., Berchier, A. Jr., 1995. Studies on the use of a formic acid-propionic acid mixture (Bio-addTM) to control experimental Salmonella infection in broiler chickens. Avian Pathology 24, 303-311.
Jeckel, W.H., De Moreno, J.E.A., Moreno, V.J., 1989. Biochemical composition, lipid classes and fatty acid in the ovary of the shrimp Pleoticus muelleri Bate. Comp. Biochem. Physiol. 92(B), 271-276.
Joyner, S.P., 1985. SAS/STAT Guide for Personal Computers. Statistical Analysis System Institute, Cary, NC, USA.
Kayama, M., Hirata M., Kanazawa A., Tokiwa S., Saito M., 1980. Essential fatty acid in the diet of prawn-III. Lipid metabolism and fatty acid composition. Bull. Jpn. Soc. Sci. Fish. 46, 483-488.
Kirchgessner, M., Paulicks, B.R., Roth, F.X., 1997. Effects of supplementation of Diformate complexes (FormiTM LHS) on growth and careass performance of piglets and fattening pig in response to application time. Agribiol. Res. 50, 1-7.
Koskela, R.W., Greenwood, J.G., Rothlisberg, P.C., 1992. The influence of prostaglandin E2 and the steroid hormones, 17α- hydroxyprogesterone and 17β-estradiol on moulting and ovarian development in the tiger prawn, Penaeus esculentus Haswell, 1879 (crustacea: decapoda). Comp. Biochem. Physiol. 101A, 295-299.
Lim, C., Ako, H., Brown, C.L., Hahn, K., 1997. Growth response and fatty acid composition of juvenile Penaeus vannamei fed different sources of dietary lipid. Aquaculture 151, 143-153.
Lytle, J.S. Lytl, T.F., Ogle, J., 1990. Polyunsaturated fatty acid profiles as a comparative tool in assessing maturation diets of of Penaeus vannamei. Aquaculture 89, 287-299.
McConaugha, J.R., 1985. Nutrition and Larval growth. In Wemnner, A. M., (Ed), Crustacean Issues 2: Larval Geowth. Rotterdami Balkema, A. M., pp. 127-154.
Melcalfe, L.D., Schmitz, A.A., 1961. The rapid preparation of fatty acid esters for gas chromatographic analysis. Anal. Chem. 33, 363-365.
Middleditch, B.S., Missler, S.R., Ward, D.R., McVey, J.P., Brown, A., Lawrence, A.L., 1979. Maturation of penaeid shrimp: Dietary fatty acids. Proc. World Maricult. Soc. 10, 472-476.
O’Leary, C.D., Mathews, A.D., 1990. Lipid class distribution and fatty acid composition of wild and farmed prawn Penaeus monodon (Fabricius). Aquaculture 89, 64-81.
Øverland, M., Granli, T., Kjos, N.P., Fjetland, O., Steien, S.H., Stokstad, M., 2000. Effect of dietary formats on growth performance, carcass traits, sensory quality, intestimal microflora, and stomach alterations in growth-finishing pig. J. Animal Sci. 78, 1875-1884.
Paulicks, B.R., Roth, F.X., Kirchgessner, M., 1996. Dose effects of potassium diformate (FormiTM LHS) on the performance of growing piglets. Agribiol. Res. 49, 318-326.
Pére-Farfante, I., Kensley, B.F., 1997. Penaeoid and Sergestoid shrimps and prawns of the world: Keys and diagnoses for the families and genera. Mem. Mus. Natl. Hist. Nat. 175, 1-233.
Ponce-Palafox, J., Martinez-Palacios, C. A., Ross, L. G., 1997. The effects of salinity and temperature on the growth and survival rates of juvenile white shrimp, Penaeus vannamei, Boone, 1931. Aquaculture 157, 107-115.
Siljander-Rasi, H., Alaviuhkola, T., Suomi, K., 1998. Carbadox, formic acid and potato fibre as feed additives for growing pig. J. Animal Feed Sci. 7, 205-209.
Thompson, J.L., Hinton, M., 1997. Antibacterial activity of formic acid propionic acid in the diet of hens on salmonellas in the crop. Bri. Poul. Sci. 38, 59-65.
Xu, X., Wenjuan, J., Castell, J.D., O’Dor, R., 1993. The nutritional value of dietary n-3 and n-6 fatty acids for the Chinese prawn (Penaeus chinensis). Aquaculture 118, 277-285.
Yehuda, S., Rabinovitz, S., Mostofsky, D.I., 1997. Effects of essential fatty acid preparation (SR-3) on brain lipids, biochemistry and behavioural and cognitive functions. In: Handbook of essential fatty acid biology: biochemistry, physiology, and behavioural neurobiology (Yehuda, S., Mostofsky, D.I. eds), Humana Press, Totowa, NJ, USA. 427-452.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊