跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/04 19:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳建勳
研究生(外文):Jian-Shiung Wu
論文名稱:斑馬魚arnt2a/b/c、hif1α及hif3α基因對嗅覺器官發育的影響
論文名稱(外文):Functions of zebrafish arnt2 a/b/c、hif1α and hif3α genes in olfactory development
指導教授:胡清華胡清華引用關係
指導教授(外文):Chin-Hwa Hu
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:86
中文關鍵詞:斑馬魚胚胎發育嗅覺
外文關鍵詞:zebrafishembryodevelopmentolfactoryarnthif
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
最近研究發現,有一群bHLH – PAS基因調控蛋白在脊椎動物胚胎發育過程中扮演著相當重要的角色。其中又以ARNT為核心蛋白,它會和其他的bHLH – PAS蛋白形成異構偶合體,而調控多種的生理反應,例如:毒物代謝、缺氧反應、生理時鐘反應、血管形成以及神經發育等。在本實驗室先前的實驗發現,若分別將arnt2a/b/c 12ng antisense MO(morpholino)或hif1 a +hif3 a 28ng MO注射入斑馬魚胚胎,對斑馬魚胚胎進行基因knock-down的實驗,發現對於胚胎顱面的形態有相當嚴重的影響。所以本實驗首先將morphant 胚胎,於掃瞄式電子顯微鏡(SEM)下觀察,發現相較於wild-type而言,鼻窩均有不一樣的改變,且又以打arnt2a/b/c 12ng MO那組有更嚴重的影響,鼻窩幾乎已經消失,因此推測這些基因對於嗅覺器官的發育扮演著重要的角色。
所以為了更清楚去瞭解其中的基因調控機制問題,本實驗利用全覆式原位雜合的方法,觀察嗅覺上皮以及嗅球發育的相關標記基因表現,如:omp、anxV、coe2、neuroD、emx1、dlx3等,結果發現,干擾arnt2a/b/c基因表現之後,嗅覺器官的發育明顯的受到影響,而且在發育早期於嗅基板形成時期就已經干擾了嗅覺器官發育,其次再利用神經脊細胞的標記基因foxd3去檢視,也發現神經脊細胞明顯的減少,而顱部神經脊細胞已經知道對於嗅基板的誘發佔有一定重要的角色,且這些細胞將來也有部分會形成鼻子軟骨的構造,因此實驗結果顯示ARNT2A/B/C在嗅覺器官發育過程扮演著重要角色。但是在干擾hif1a + hif3a基因表現的實驗中,則未觀察到嗅覺器官發育顯著的差異,推測hif1a + hif3a對於嗅覺器官的發育只是非間接的影響。
除此之外,在一些神經系統發育標記基因的觀察下,如:ngn1、coe2、l1.1等,發現受到了arnt2a/b/c MO的影響,這些基因的表現量也是明顯的降低,顯示了ARNT2A/B/C對於神經系統發育的重要性。
Recently, a novel bHLH-PAS transcriptional factor family was revealed to play an important role in vertebrate development. SIM, HIF and AHR can form heterodimers with a central bHLH/PAS partner protein, ARNT, to modulate variety of biological functions, including neurogenesis, angiogenesis and vasculogenesis, and biological circadian rhythm.
Previous studies in our laboratory have shown that repression of arnt2a/b/c or hif1a+hif3a by morpholino oligonucleotides (MO) caused serious defect in embryonic cranial phenotype. In this study, I observed the cranial defect of arnt2a/b/c-knockdown morphant embryos by scanning electric microscope (SEM) and found significant defect in the olfactory pit comparing to the wild type embryos. Hence, we proposed that those genes may involved in olfactory organ development.
In order to understand the detail regulatory mechanism, we have investigated the expression patterns of several olfactory relative marker genes, including omp, anxV, coe2, neuroD, emx1 and dlx3, by in situ hybridization. It appeared that the development of olfactory organs have been affected significantly in the early stages of the arnt2a/b/c morphant embryos. The repression of neural crest marker, foxd3, suggested that the neural crest cells are decreased in arnt2a/b/c morphant embryos. It was known that the cranial neural crest cells play important role in inducing olfactory placode development and a portion of them form the olfactory cartilage. This study revealed that arnt2a/b/c are very important in olfactory development. In contrast, there was no significant defect in hif1a+hif3a knockdown morphant embryos. It suggested that the hif1a+hif3a antisense morpholino affected the olfactory development indirectly.
In addition to the olfactory-related markers, the expression patterns of a number of neural maker genes, such as ngn1, coe2, l1.1, were also affected in the arnt2a/b/c morphant embryos. It suggested that ARNT2A/B/C play essential roles in neural system development.
謝誌………………………………………….…………….4
中文摘要……………………………………….………….5
英文摘要…………………………………………………..7
前言………………………………………………………..9
嗅覺器官的發育………………………………....…….…13
神經系統的發育……………………...…………………..17
實驗動機與背景說明………………………………….....19
實驗材料...……………………………………….……….21
實驗方法
A、斑馬魚飼養與受精胚胎收集…………………………… …27
B、斑馬魚全量RNA抽取…………………………………......27
C、核酸電泳分析……………………………………...……….28
D、DNA分子之萃取...................................................................29
E、DNA接合反應.......................................................................30
F、質體轉型.................................................................................31
G、反轉錄聚合酶連鎖反應........................................................31
H、RNA全覆式原位雜交...........................................................32
I、顯微注射…………………………………………………......39
J、掃描式電子顯微鏡……………………………………...…...41
實驗結果
一、 干擾arnt2a/b/c以及hif1a + hif3a基因表現對鼻子的
外形影響………………………………………………………..45
二、 顯微注射arnt2a/b/c sense MO (control MO)對斑馬魚
胚胎外型的影響……………..………………….…….…..........45
三、干擾arnt2a/b/c基因表現對於嗅覺器官發育的影響…….....…46
四、注射arnt2a/b/c MO不同劑量對嗅覺器官發育的影響……….50
五、干擾hif1α+hif3α基因表現對於嗅覺器官發育的影響……….. 50
六、干擾arnt2a/b/c基因表現對於神經系統發育的影響……….…51
討論
一、arnt2a/b/c 對於胚胎嗅覺上表皮發育的影響……………...…...53
二、arnt2a/b/c 對於胚胎嗅球發育的影響………………………..…54
三、hif1α+hif3α對於胚胎嗅覺器官的影響…………………...……55
四、arnt2a/b/c 對於胚胎神經系統發育的影響…………………..…55
參考文獻…………………………………………...……..57
附圖與結果照片
附圖一、斑馬魚ARNT2相關蛋白的比較…………………………..70
圖一、注射不同MO的morphant於96 hpf電子顯微鏡下
觀察到的鼻窩外觀…………………………………………….71
圖二、arnt2a/b/c morphant 胚胎120 hpf外觀的變化………………72
圖三、.注射arnt2a/b/c MO對不同時期omp的影響…………….....73
圖四、.注射arnt2a/b/c MO對不同時期anxV的影響………………74
圖五、注射arnt2a/b/c MO對24 hpf時期coe2的影響……………..75
圖六、.注射arnt2a/b/c MO對不同時期dlx3的影響………………76
圖七、注射arnt2a/b/c MO對24 hpf時期emx1的影響……………77
圖八、注射arnt2a/b/c MO對24 hpf時期eom的影響……………..78
圖九、.注射arnt2a/b/c MO對不同時期neuroD的影響……………79
圖十、.注射arnt2a/b/c MO對不同時期ndr1b的影響……………..80
圖十一、.注射arnt2a/b/c MO對不同時期foxd3的影響…………...81
圖十二、arnt2a/b/c MO劑量測試……………………………………82
圖十三、.注射hif1a + hif3a MO對不同時期標記基因的影響……..83
圖十四、注射arnt2a/b/c MO對24 hpf時期coe2的影響………….84
圖十五、注射arnt2a/b/c MO對10 hpf時期ngn1的影響………….85
圖十六、.注射arnt2a/b/c MO對不同時期l1.1的影響……………..86
Altmann, C. R., and Brivanlou, A. H. (2001). Neural patterning in the vertebrate embryo. Int Rev Cytol 203, 447-82.
Andreasen, E. A., Spitsbergen, J. M., Tanguay, R. L., Stegeman, J. J., Heideman, W., and Peterson, R. E. (2002). Tissue-specific expression of AHR2, ARNT2, and CYP1A in zebrafish embryos and larvae: Effects of developmental stage and 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure. Toxicological Sciences 68, 403-419.
Artavanis-Tsakonas, S., Matsuno, K., and Fortini, M. E. (1995). Notch signaling. Science 268, 225-32.
Bachiller, D., Klingensmith, J., Kemp, C., Belo, J. A., Anderson, R. M., May, S. R., McMahon, J. A., McMahon, A. P., Harland, R. M., Rossant, J., and De Robertis, E. M. (2000). The organizer factors Chordin and Noggin are required for mouse forebrain development. Nature 403, 658-61.
Baker, C. V., and Bronner-Fraser, M. (2001a). Vertebrate cranial placodes I. Embryonic induction. Dev Biol 232, 1-61.
Baker, C. V. H., and Bronner-Fraser, M. (2001b). Vertebrate cranial placodes I. Embryonic induction. Devl Biol 232, 1-61.
Bally-Cuif L FAU - Dubois, L., Dubois L FAU - Vincent, A., and Vincent A LA - eng SI - GENBANK/AF072657 PT - Journal Article PL - IRELAND TA - Mech Dev JID - 9101218 RN - 0 (DNA, C. R.-. (1998). Molecular cloning of Zcoe2, the zebrafish homolog of Xenopus Xcoe2 and mouse EBF-2, and its expression during primary neurogenesis. PG - 85-90.
Bishop, K. M., Garel, S., Nakagawa, Y., Rubenstein, J. L., and O'Leary, D. D. (2003). Emx1 and Emx2 cooperate to regulate cortical size, lamination, neuronal differentiation, development of cortical efferents, and thalamocortical pathfinding. J Comp Neurol 457, 345-60.
Blader, P., Plessy, C., and Strahle, U. (2003). Multiple regulatory elements with spatially and temporally distinct activities control neurogenin1 expression in primary neurons of the zebrafish embryo. Mech Dev 120, 211-8.
Blumberg, B., Bolado, J., Jr., Moreno, T. A., Kintner, C., Evans, R. M., and Papalopulu, N. (1997). An essential role for retinoid signaling in anteroposterior neural patterning. Development 124, 373-9.
Bracken, C. P., Whitelaw, M. L., and Peet, D. J. (2003). The hypoxia-inducible factors: key transcriptional regulators of hypoxic responses. Cell Mol Life Sci 60, 1376-93.
Bronner-Fraser, M. (1995). Origins and developmental potential of the neural crest. Exp Cell Res 218, 405-17.
Bruick, R. K. (2000). Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci U S A 97, 9082-7.
Buiakova, O. I., Baker, H., Scott, J. W., Farbman, A., Kream, R., Grillo, M., Franzen, L., Richman, M., Davis, L. M., Abbondanzo, S., Stewart, C. L., and Margolis, F. L. (1996). Olfactory marker protein (OMP) gene deletion causes altered physiological activity of olfactory sensory neurons. Proc Natl Acad Sci U S A 93, 9858-63.
Bunn, H. F., and Poyton, R. O. (1996). Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev 76, 839-85.
Burbach, K. M., Poland, A., and Bradfield, C. A. (1992). Cloning of the Ah-receptor cDNA reveals a distinctive ligand-activated transcription factor. Proc Natl Acad Sci U S A 89, 8185-9.
Byrd, C. A., and Brunjes, P. C. (1995). Organization of the olfactory system in the adult zebrafish: histological, immunohistochemical, and quantitative analysis. J Comp Neurol 358, 247-59.
Byrd, C. A., and Brunjes, P. C. (1998). Addition of new cells to the olfactory bulb of adult zebrafish. Ann N Y Acad Sci 855, 274-6.
Byrd, C. A., Jones, J. T., Quattro, J. M., Rogers, M. E., Brunjes, P. C., and Vogt, R. G. (1996). Ontogeny of odorant receptor gene expression in zebrafish, Danio rerio. J Neurobiol 29, 445-58.
Carmeliet, P., Ferreira, V., Breier, G., Pollefeyt, S., Kieckens, L., Gertsenstein, M., Fahrig, M., Vandenhoeck, A., Harpal, K., Eberhardt, C., Declercq, C., Pawling, J., Moons, L., Collen, D., Risau, W., and Nagy, A. (1996). Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435-9.
Catania, S., Germana, A., Laura, R., Gonzalez-Martinez, T., Ciriaco, E., and Vega, J. A. (2003). The crypt neurons in the olfactory epithelium of the adult zebrafish express TrkA-like immunoreactivity. Neurosci Lett 350, 5-8.
Cau, E., Casarosa, S., and Guillemot, F. (2002). Mash1 and Ngn1 control distinct steps of determination and differentiation in the olfactory sensory neuron lineage. Development 129, 1871-80.
Celik, A., Fuss, S. H., and Korsching, S. I. (2002). Selective targeting of zebrafish olfactory receptor neurons by the endogenous OMP promoter. European Journal of Neuroscience 15, 798-806.
Chen, H., Chrast, R., Rossier, C., Gos, A., Antonarakis, S. E., Kudoh, J., Yamaki, A., Shindoh, N., Maeda, H., Minoshima, S., and et al. (1995). Single-minded and Down syndrome? Nat Genet 10, 9-10.
Cheng, A. M., Thisse, B., Thisse, C., and Wright, C. V. (2000). The lefty-related factor Xatv acts as a feedback inhibitor of nodal signaling in mesoderm induction and L-R axis development in xenopus. Development 127, 1049-61.
Chrast, R., Scott, H. S., Chen, H., Kudoh, J., Rossier, C., Minoshima, S., Wang, Y., Shimizu, N., and Antonarakis, S. E. (1997). Cloning of two human homologs of the Drosophila single-minded gene SIM1 on chromosome 6q and SIM2 on 21q within the Down syndrome chromosomal region. Genome Res 7, 615-24.
Citri, Y., Colot, H. V., Jacquier, A. C., Yu, Q., Hall, J. C., Baltimore, D., and Rosbash, M. (1987). A family of unusually spliced biologically active transcripts encoded by a Drosophila clock gene. Nature 326, 42-7.
Compernolle, V., Brusselmans, K., Acker, T., Hoet, P., Tjwa, M., Beck, H., Plaisance, S., Dor, Y., Keshet, E., Lupu, F., Nemery, B., Dewerchin, M., Van Veldhoven, P., Plate, K., Moons, L., Collen, D., and Carmeliet, P. (2002). Loss of HIF-2alpha and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat Med 8, 702-10.
Cornell, R. A., and Eisen, J. S. (2002). Delta/Notch signaling promotes formation of zebrafish neural crest by repressing Neurogenin 1 function. Development 129, 2639-48.
Cox, W. G., and Hemmati-Brivanlou, A. (1995). Caudalization of neural fate by tissue recombination and bFGF. Development 121, 4349-58.
Crews, S., Franks, R., Hu, S., Matthews, B., and Nambu, J. (1992). Drosophila single-minded gene and the molecular genetics of CNS midline development. J Exp Zool 261, 234-44.
Crews, S. T., Thomas, J. B., and Goodman, C. S. (1988). The Drosophila single-minded gene encodes a nuclear protein with sequence similarity to the per gene product. Cell 52, 143-51.
Cuschieri, A., and Bannister, L. H. (1975). The development of the olfactory mucosa in the mouse: light microscopy. J Anat 119, 277-86.
Dahmane, N., Charron, G., Lopes, C., Yaspo, M. L., Maunoury, C., Decorte, L., Sinet, P. M., Bloch, B., and Delabar, J. M. (1995). Down syndrome-critical region contains a gene homologous to Drosophila sim expressed during rat and human central nervous system development. Proc Natl Acad Sci U S A 92, 9191-5.
Dellovade, T. L., Pfaff, D. W., and Schwanzel-Fukuda, M. (1998). The gonadotropin-releasing hormone system does not develop in Small-Eye (Sey) mouse phenotype. Brain Res Dev Brain Res 107, 233-40.
Drutel, G., Heron, A., Kathmann, M., Gros, C., Mace, S., Plotkine, M., Schwartz, J. C., and Arrang, J. M. (1999). ARNT2, a transcription factor for brain neuron survival? Eur J Neurosci 11, 1545-53.
Drutel, G., Kathmann, M., Heron, A., Schwartz, J. C., and Arrang, J. M. (1996). Cloning and selective expression in brain and kidney of ARNT2 homologous to the Ah receptor nuclear translocator (ARNT). Biochem Biophys Res Commun 225, 333-9.
Dubois, L., Bally-Cuif, L., Crozatier, M., Moreau, J., Paquereau, L., and Vincent, A. (1998). XCoe2, a transcription factor of the Col/Olf-1/EBF family involved in the specification of primary neurons in Xenopus. Curr Biol 8, 199-209.
Dynes, J. L., and Ngai, J. (1998). Pathfinding of olfactory neuron axons to stereotyped glomerular targets revealed by dynamic imaging in living zebrafish embryos. Neuron 20, 1081-91.
Echelard, Y., Epstein, D. J., St-Jacques, B., Shen, L., Mohler, J., McMahon, J. A., and McMahon, A. P. (1993). Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75, 1417-30.
Ema, M., Morita, M., Ikawa, S., Tanaka, M., Matsuda, Y., Gotoh, O., Saijoh, Y., Fujii, H., Hamada, H., Kikuchi, Y., and Fujii-Kuriyama, Y. (1996). Two new members of the murine Sim gene family are transcriptional repressors and show different expression patterns during mouse embryogenesis. Mol Cell Biol 16, 5865-75.
Fan, C. M., Kuwana, E., Bulfone, A., Fletcher, C. F., Copeland, N. G., Jenkins, N. A., Crews, S., Martinez, S., Puelles, L., Rubenstein, J. L., and Tessier-Lavigne, M. (1996a). Expression patterns of two murine homologs of Drosophila single-minded suggest possible roles in embryonic patterning and in the pathogenesis of Down syndrome. Mol Cell Neurosci 7, 1-16.
Fan, N., Rank, K. B., Poppe, S. M., Tarpley, W. G., and Sharma, S. K. (1996b). Characterization of the p68/p58 heterodimer of human immunodeficiency virus type 2 reverse transcriptase. Biochemistry 35, 1911-7.
Farbman, A. I. (1994). Developmental biology of olfactory sensory neurons. Semin Cell Biol 5, 3-10.
Fekany-Lee, K., Gonzalez, E., Miller-Bertoglio, V., and Solnica-Krezel, L. (2000). The homeobox gene bozozok promotes anterior neuroectoderm formation in zebrafish through negative regulation of BMP2/4 and Wnt pathways. Development 127, 2333-45.
Fernandez, M. P., Morgan, R. O., Fernandez, M. R., and Carcedo, M. T. (1994). The gene encoding human annexin V has a TATA-less promoter with a high G+C content. Gene 149, 253-60.
Ferrara, N., Carver-Moore, K., Chen, H., Dowd, M., Lu, L., O'Shea, K. S., Powell-Braxton, L., Hillan, K. J., and Moore, M. W. (1996). Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439-42.
Francis-West, P. H., Tatla, T., and Brickell, P. M. (1994). Expression patterns of the bone morphogenetic protein genes Bmp-4 and Bmp-2 in the developing chick face suggest a role in outgrowth of the primordia. Dev Dyn 201, 168-78.
Gleadle, J. M., and Ratcliffe, P. J. (1997). Induction of hypoxia-inducible factor-1, erythropoietin, vascular endothelial growth factor, and glucose transporter-1 by hypoxia: evidence against a regulatory role for Src kinase. Blood 89, 503-9.
Golling, G., Amsterdam, A., Sun, Z., Antonelli, M., Maldonado, E., Chen, W., Burgess, S., Haldi, M., Artzt, K., Farrington, S., Lin, S. Y., Nissen, R. M., and Hopkins, N. (2002). Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nat Genet 31, 135-40.
Goshu, E., Jin, H., Fasnacht, R., Sepenski, M., Michaud, J. L., and Fan, C. M. (2002). Sim2 mutants have developmental defects not overlapping with those of Sim1 mutants. Mol Cell Biol 22, 4147-57.
Graziadei, P. P., and Monti-Graziadei, A. G. (1992). The influence of the olfactory placode on the development of the telencephalon in Xenopus laevis. Neuroscience 46, 617-29.
Guillemin, K., and Krasnow, M. A. (1997). The hypoxic response: huffing and HIFing. Cell 89, 9-12.
Haddon, C., Smithers, L., Schneider-Maunoury, S., Coche, T., Henrique, D., and Lewis, J. (1998). Multiple delta genes and lateral inhibition in zebrafish primary neurogenesis. Development 125, 359-70.
Hansen, A., and Zeiske, E. (1993). Development of the olfactory organ in the zebrafish, Brachydanio rerio. J Comp Neurol 333, 289-300.
Harris, A. L. (2002). Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer 2, 38-47.
Hartenstein, V. (1993). Early pattern of neuronal differentiation in the Xenopus embryonic brainstem and spinal cord. J Comp Neurol 328, 213-31.
Heikinheimo, M., Lawshe, A., Shackleford, G. M., Wilson, D. B., and MacArthur, C. A. (1994). Fgf-8 expression in the post-gastrulation mouse suggests roles in the development of the face, limbs and central nervous system. Mech Dev 48, 129-38.
Hinds, J. W. (1968). Autoradiographic study of histogenesis in the mouse olfactory bulb. II. Cell proliferation and migration. J Comp Neurol 134, 305-22.
Hoffman, E. C., Reyes, H., Chu, F. F., Sander, F., Conley, L. H., Brooks, B. A., and Hankinson, O. (1991). Cloning of a factor required for activity of the Ah (dioxin) receptor. Science 252, 954-8.
Holder, J. L., Jr., Butte, N. F., and Zinn, A. R. (2000). Profound obesity associated with a balanced translocation that disrupts the SIM1 gene. Hum Mol Genet 9, 101-8.
Houart, C., Caneparo, L., Heisenberg, C., Barth, K., Take-Uchi, M., and Wilson, S. (2002). Establishment of the telencephalon during gastrulation by local antagonism of Wnt signaling. Neuron 35, 255-65.
Hsu, H. J., Wang, W. D., and Hu, C. H. (2001). Ectopic expression of negative ARNT2 factor disrupts fish development. Biochemical and Biophysical Research Communications 282, 487-492.
Jackson, F. R., Bargiello, T. A., Yun, S. H., and Young, M. W. (1986). Product of per locus of Drosophila shares homology with proteoglycans. Nature 320, 185-8.
Jacobson, A. G. (1963). The Determination and Positioning of the Nose, Lens and Ear. I. Interactions within the Ectoderm, and between the Ectoderm and Underlying Tissues. J Exp Zool 154, 273-83.
Jacobson, A. G. (1966). Inductive processes in embryonic development. Science 152, 25-34.
Jiang, B. H., Agani, F., Passaniti, A., and Semenza, G. L. (1997). V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Res 57, 5328-35.
Johnson, R. L., and Tabin, C. J. (1997). Molecular models for vertebrate limb development. Cell 90, 979-90.
Karni, R., Dor, Y., Keshet, E., Meyuhas, O., and Levitzki, A. (2002). Activated pp60c-Src leads to elevated hypoxia-inducible factor (HIF)-1alpha expression under normoxia. J Biol Chem 277, 42919-25.
Kawahara, A., and Dawid, I. B. (2002). Developmental expression of zebrafish emx1 during early embryogenesis. Gene Expr Patterns 2, 201-6.
Kelsh, R. N., Dutton, K., Medlin, J., and Eisen, J. S. (2000). Expression of zebrafish fkd6 in neural crest-derived glia. Mech Dev 93, 161-4.
Kewley, R. J., Whitelaw, M. L., and Chapman-Smith, A. (2004). The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. Int J Biochem Cell Biol 36, 189-204.
Kojima, H., Gu, H., Nomura, S., Caldwell, C. C., Kobata, T., Carmeliet, P., Semenza, G. L., and Sitkovsky, M. V. (2002). Abnormal B lymphocyte development and autoimmunity in hypoxia-inducible factor 1alpha -deficient chimeric mice. Proc Natl Acad Sci U S A 99, 2170-4.
Kozlowski, D. J., Murakami, T., Ho, R. K., and Weinberg, E. S. (1997). Regional cell movement and tissue patterning in the zebrafish embryo revealed by fate mapping with caged fluorescein. Biochem Cell Biol 75, 551-62.
LaBonne, C., and Bronner-Fraser, M. (1999). Molecular mechanisms of neural crest formation. Annu Rev Cell Dev Biol 15, 81-112.
LaMantia, A. S., Bhasin, N., Rhodes, K., and Heemskerk, J. (2000). Mesenchymal/epithelial induction mediates olfactory pathway formation. Neuron 28, 411-25.
LaMantia, A. S., Colbert, M. C., and Linney, E. (1993). Retinoic acid induction and regional differentiation prefigure olfactory pathway formation in the mammalian forebrain. Neuron 10, 1035-48.
Lee, J. E. (1997). Basic helix-loop-helix genes in neural development. Curr Opin Neurobiol 7, 13-20.
Lee, J. E., Hollenberg, S. M., Snider, L., Turner, D. L., Lipnick, N., and Weintraub, H. (1995). Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein. Science 268, 836-44.
Liao, J., He, J., Yan, T., Korzh, V., and Gong, Z. (1999). A class of neuroD-related basic helix-loop-helix transcription factors expressed in developing central nervous system in zebrafish. DNA Cell Biol 18, 333-44.
Lindebro, M. C., Poellinger, L., and Whitelaw, M. L. (1995). Protein-protein interaction via PAS domains: role of the PAS domain in positive and negative regulation of the bHLH/PAS dioxin receptor-Arnt transcription factor complex. Embo J 14, 3528-39.
Ma, Q., Kintner, C., and Anderson, D. J. (1996). Identification of neurogenin, a vertebrate neuronal determination gene. Cell 87, 43-52.
Mackay-Sima, A., and Chuahb, M. I. (2000). Neurotrophic factors in the primary olfactory pathway. Prog Neurobiol 62, 527-59.
Massari, M. E., and Murre, C. (2000). Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol 20, 429-40.
Mayor, R., Young, R., and Vargas, A. (1999). Development of neural crest in Xenopus. Curr Top Dev Biol 43, 85-113.
Mazure, N. M., Chen, E. Y., Laderoute, K. R., and Giaccia, A. J. (1997). Induction of vascular endothelial growth factor by hypoxia is modulated by a phosphatidylinositol 3-kinase/Akt signaling pathway in Ha-ras-transformed cells through a hypoxia inducible factor-1 transcriptional element. Blood 90, 3322-31.
Menco, B. P., and Farbman, A. I. (1985). Genesis of cilia and microvilli of rat nasal epithelia during pre-natal development. I. Olfactory epithelium, qualitative studies. J Cell Sci 78, 283-310.
Michaud, J. L., Boucher, F., Melnyk, A., Gauthier, F., Goshu, E., Levy, E., Mitchell, G. A., Himms-Hagen, J., and Fan, C. M. (2001). Sim1 haploinsufficiency causes hyperphagia, obesity and reduction of the paraventricular nucleus of the hypothalamus. Hum Mol Genet 10, 1465-73.
Michaud, J. L., DeRossi, C., May, N. R., Holdener, B. C., and Fan, C. M. (2000). ARNT2 acts as the dimerization partner of SIM1 for the development of the hypothalamus. Mech Dev 90, 253-61.
Michaud, J. L., Rosenquist, T., May, N. R., and Fan, C. M. (1998). Development of neuroendocrine lineages requires the bHLH-PAS transcription factor SIM1. Genes Dev 12, 3264-75.
Mione, M., Shanmugalingam, S., Kimelman, D., and Griffin, K. (2001). Overlapping expression of zebrafish T-brain-1 and eomesodermin during forebrain development. Mech Dev 100, 93-7.
Mombaerts, P., Wang, F., Dulac, C., Chao, S. K., Nemes, A., Mendelsohn, M., Edmondson, J., and Axel, R. (1996). Visualizing an olfactory sensory map. Cell 87, 675-86.
Mueller, T., and Wullimann, M. F. (2003). Anatomy of neurogenesis in the early zebrafish brain. Brain Res Dev Brain Res 140, 137-55.
Nambu, J. R., Lewis, J. O., Wharton, K. A., Jr., and Crews, S. T. (1991). The Drosophila single-minded gene encodes a helix-loop-helix protein that acts as a master regulator of CNS midline development. Cell 67, 1157-67.
Neave, B., Holder, N., and Patient, R. (1997). A graded response to BMP-4 spatially coordinates patterning of the mesoderm and ectoderm in the zebrafish. Mech Dev 62, 183-95.
Nguyen, V. H., Schmid, B., Trout, J., Connors, S. A., Ekker, M., and Mullins, M. C. (1998). Ventral and lateral regions of the zebrafish gastrula, including the neural crest progenitors, are established by a bmp2b/swirl pathway of genes. Dev Biol 199, 93-110.
Nibu, K., Li, G., Zhang, X., Rawson, N. E., Restrepo, D., Kaga, K., Lowry, L. D., Keane, W. M., and Rothstein, J. L. (1999). Olfactory neuron-specific expression of NeuroD in mouse and human nasal mucosa. Cell Tissue Res 298, 405-14.
Ohshiro, T., and Saigo, K. (1997). Transcriptional regulation of breathless FGF receptor gene by binding of TRACHEALESS/dARNT heterodimers to three central midline elements in Drosophila developing trachea. Development 124, 3975-86.
Osoegawa, K., Okano, S., Kato, Y., Nishimura, Y., and Soeda, E. (1996). A 19-kb CpG island associated with single-minded gene 2 in Down syndrome chromosomal region. DNA Res 3, 175-9.
Park, S. H., Yeo, S. Y., Yoo, K. W., Hong, S. K., Lee, S., Rhee, M., Chitnis, A. B., and Kim, C. H. (2003). Zath3, a neural basic helix-loop-helix gene, regulates early neurogenesis in the zebrafish. Biochem Biophys Res Commun 308, 184-90.
Peng, J., Zhang, L., Drysdale, L., and Fong, G. H. (2000). The transcription factor EPAS-1/hypoxia-inducible factor 2alpha plays an important role in vascular remodeling. Proc Natl Acad Sci U S A 97, 8386-91.
Richman, J. M., and Tickle, C. (1989). Epithelia are interchangeable between facial primordia of chick embryos and morphogenesis is controlled by the mesenchyme. Dev Biol 136, 201-10.
Ryan, H. E., Lo, J., and Johnson, R. S. (1998). HIF-1 alpha is required for solid tumor formation and embryonic vascularization. Embo J 17, 3005-15.
Schmahl, W., Knoedlseder, M., Favor, J., and Davidson, D. (1993). Defects of neuronal migration and the pathogenesis of cortical malformations are associated with Small eye (Sey) in the mouse, a point mutation at the Pax-6-locus. Acta Neuropathol (Berl) 86, 126-35.
Schwanzel-Fukuda, M., Abraham, S., Crossin, K. L., Edelman, G. M., and Pfaff, D. W. (1992). Immunocytochemical demonstration of neural cell adhesion molecule (NCAM) along the migration route of luteinizing hormone-releasing hormone (LHRH) neurons in mice. J Comp Neurol 321, 1-18.
Semenza, G. L., Jiang, B. H., Leung, S. W., Passantino, R., Concordet, J. P., Maire, P., and Giallongo, A. (1996). Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem 271, 32529-37.
Shepherd, G. M. (1972). Synaptic organization of the mammalian olfactory bulb. Physiol Rev 52, 864-917.
Solomon, K. S., and Fritz, A. (2002). Concerted action of two dlx paralogs in sensory placode formation. Development 129, 3127-3136.
Sonnenfeld, M., Ward, M., Nystrom, G., Mosher, J., Stahl, S., and Crews, S. (1997). The Drosophila tango gene encodes a bHLH-PAS protein that is orthologous to mammalian Arnt and controls CNS midline and tracheal development. Development 124, 4571-82.
Streit, A., and Stern, C. D. (1999). Establishment and maintenance of the border of the neural plate in the chick: involvement of FGF and BMP activity. Mech Dev 82, 51-66.
Tanguay, R. L., Andreasen, E., Heideman, W., and Peterson, R. E. (2000). Identification and expression of alternatively spliced aryl hydrocarbon nuclear translocator 2 (ARNT2) cDNAs from zebrafish with distinct functions. Biochim Biophys Acta 1494, 117-28.
Tian, H., Hammer, R. E., Matsumoto, A. M., Russell, D. W., and McKnight, S. L. (1998). The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev 12, 3320-4.
Tongiorgi, E., Bernhardt, R. R., and Schachner, M. (1995). Zebrafish neurons express two L1-related molecules during early axonogenesis. J Neurosci Res 42, 547-61.
Verwoerd, C. D., and van Oostrom, C. G. (1979). Cephalic neural crest and placodes. Adv Anat Embryol Cell Biol 58, 1-75.
Wang, G. L., Jiang, B. H., Rue, E. A., and Semenza, G. L. (1995). Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92, 5510-4.
Wang, W. D., Wu, J. C., Hsu, H. J., Kong, Z. L., and Hu, C. H. (2000a). Overexpression of a zebrafish ARNT2-like factor represses CYP1A transcription in ZLE cells. Marine Biotechnology 2, 376-386.
Wang, W. D., Wu, J. C., Hsu, H. J., Kong, Z. L., and Hu, C. H. (2000b). Overexpression of a Zebrafish ARNT2-like Factor Represses CYP1A Transcription in ZLE Cells. 2, 376-386.
Weinstein, D. C., and Hemmati-Brivanlou, A. (1999). Neural induction. Annu Rev Cell Dev Biol 15, 411-33.
Wen, H. J., Wang, Y., Chen, S. H., and Hu, C. H. (2002). Expression pattern of the single-minded gene in zebrafish embryos. Mech Dev 110, 231-5.
Whitlock, K. E., and Westerfield, M. (1998). A transient population of neurons pioneers the olfactory pathway in the zebrafish. Journal of Neuroscience 18, 8919-8927.
Whitlock, K. E., and Westerfield, M. (2000). The olfactory placodes of the zebrafish form by convergence of cellular fields at the edge of the neural plate. Development 127, 3645-3653.
Wilson, P. A., and Hemmati-Brivanlou, A. (1997). Vertebrate neural induction: inducers, inhibitors, and a new synthesis. Neuron 18, 699-710.
Wray, S., Grant, P., and Gainer, H. (1989). Evidence that cells expressing luteinizing hormone-releasing hormone mRNA in the mouse are derived from progenitor cells in the olfactory placode. Proc Natl Acad Sci U S A 86, 8132-6.
Yun, Z., Maecker, H. L., Johnson, R. S., and Giaccia, A. J. (2002). Inhibition of PPAR gamma 2 gene expression by the HIF-1-regulated gene DEC1/Stra13: a mechanism for regulation of adipogenesis by hypoxia. Dev Cell 2, 331-41.
Zhao, H., Ivic, L., Otaki, J. M., Hashimoto, M., Mikoshiba, K., and Firestein, S. (1998). Functional expression of a mammalian odorant receptor. Science 279, 237-42.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top