跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/02/11 20:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖展章
研究生(外文):Chan-Chang Liao
論文名稱:以加速氯離子穿透試驗評估礦物摻料及用量之混凝土耐久性影響
論文名稱(外文):Assessment Concrete Durability For Different Mineral Admixture Contant By Using Acceleration Chloride Migration Test
指導教授:楊仲家黃然黃然引用關係
指導教授(外文):C. C. YangR. Huang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:120
中文關鍵詞:氯離子耐久性礦物摻料取代量
外文關鍵詞:chloridedurabilitymineral admixturereplacement
相關次數:
  • 被引用被引用:10
  • 點閱點閱:312
  • 評分評分:
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用加速氯離子穿透試驗(accelerated chloride migration
test,ACMT),探討礦物摻料取代水泥重量之混凝土耐久性研究,藉此相關性找出適當之取代重量百分比,並以抗壓強度試驗為佐證;本試驗材料變數包含水膠比(0.35、0.45、0.55、0.65)與礦物摻料用量為替代水泥重量百分比0~55﹪之間。試驗期間量測陽極槽溶液中氯離子濃度,取穩態階段分析氯離子穿透速率,進階求出穩態期氯離子通量及利用Nernst-Planck方程式求得穿透係數。
試驗數據結果顯示混凝土中添加礦物摻料可以降低氯離子穿透速率。飛灰取代量為25﹪時,為氯離子穿透係數最小,水淬爐石粉添加45﹪替代水泥重量之混凝土穿透係數最小,並將飛灰混凝土與爐石混凝土配比之穿透係數進行回歸分析,於各水膠比下得到最高之飛灰與爐石取代量且穿透係數值為最低。飛灰混凝土中水膠比與穿透係數之線性關係斜率值,得知飛灰用量25﹪在水膠比變化影響最小;而爐石混凝土中水膠比與穿透係數之線性關係斜率值,得知爐石用量55﹪在水膠比變化影響最小。最後以兩者礦物摻料取代水泥重量之混凝土穿透係數與抗壓強度進行比較,得知爐石取代量35﹪水泥重量之後抵抗氯離子能力比飛灰混凝土好,而抗壓強度與穿透係數並無一定關係,故不適宜用抗壓強度評估混凝土之耐久性。
The accelerated chloride migration test (ACMT) was used to investigate the effect of mineral admixtures on the resistance of chloride ion penetration in concrete. Testing variables include the content of fly ash/ground granulated blast-furnace slag and water/binder ratio. Cylindrical specimens with a dimension of 10x20cm were cast for compressive strength test and chloride penetration test. Chloride ion flux and the chloride ion migration coefficient were evaluated using the test data and Nernst-Planck equation.
It was found that partial replacement of fly ash/slag for Portland cement in concrete is beneficial for resistance of chloride ion penetration. The optimum percent of replacement is 25% for fly ash and 45% for slag, respectively. Slag replacement is better than fly ash replacement as far as migration coefficient is concerned. And, there is no definite relationship between compressive strength and flux (or chloride migration coefficient).
摘 要
Abstrat
目錄
表目錄
圖目錄
第一章 緒論
1-1 前言 1
1-2 研究目的
1-3 研究方法與流程
第二章 文獻回顧
2-1 礦物摻料之探討
2-1-1 飛灰
2-1-2 水淬爐石
2-2 孔隙結構
2-2-1 添加礦物摻料之孔隙結構與滲透性
2-3 氯離子於混凝土中傳輸擴散機理
2-3-1 加速氯離子穿透試驗(ACMT)
2-4 溫度效應影響
第三章 試驗計劃
3-1 試驗變數
3-2 試驗材料性質
3-3 試驗配比設計與配比編號
3-4 試驗方法與儀器設備
3-4-1 加速氯離子傳輸試驗(ACMT)
3-4-2 氯離子濃度量測(Metrohm Basic IC)
3-4-3 萬能材料試驗機(抗壓強度)
第四章 結果與討論
4-1 前言
4-2 氯離子傳輸過程
4-2-1 氯離子穿透速率
4-2-2 飛灰混凝土穿透速率
4-2-3 氯離子穿透係數
4-2-4 飛灰混凝土穿透係數
4-2-5 飛灰配比之抗壓強度
4-3 探討爐石用量與水膠比之關係
4-3-1 爐石混凝土之穿透速率
4-3-2 爐石混凝土之穿透係數
4-3-3 爐石配比之抗壓強度
4-4 礦物摻料之穿透係數與抗壓強度比較
第五章 結論與建議
5-1 結論
5-2 建議
參考文獻
1. Page, C. L.; Short, N. R.; and Tarros, A.,“Diffusion of Chloride Ions in Hardened Cement Pastes,”Cement and Concrete Research, V. 11,No. 3, pp.395-406, 1981.
2. Li, Z.; Peng, J.; and Ma, B.,“Investigation of Chlorid Diffusion for High-Performance Concrete Containing Fly Ash, Microsilica, and Chemical Admixtures,”ACI Materials Journal, V. 96, No. 3, May-June, pp. 391-396, 1999.
3. Metha, P.K., Gjorv, O.E., “Proterties of Portland Cement Containing Fly Ash and Condensed Silica-fume”, Cement Concrete Research, Vol.12, pp.587, 1982.
4. G.L. Valenti., R.Cioffic., S. Sersale., Behaviour of Italian Fly ash in Portland Cement Mortars, Proc. 8-th Int.Congr.on the Chemistry of Cements, Vol. Ⅳ, Th.3, pp.228, Rio de Janeiro,Brazil,1986.
5. C. C. Yang, S. W. Cho, R. Huang,“The relationship between charge passed and the chloride migration test”, Cement and Concrete Research, Vol.31, pp.1-6, 2002.
6. ACI 318-95, Building code requirements for structural concrete, ACI Manual of Concrete Practice, Part3:Using of Concrete in Building-Design, Specifications, and Related Topics, pp345, 1996.

7. 林炳炎,“飛灰用在混凝土中”現代營建雜誌, 1991.
8. ASTM C 618-99,“Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Concrete”, American Society for Testing and Materials, 1999.
9. 行政院公共工程委員會,“公共工程飛灰混凝土使用手冊”, 1999.
10. 陳清泉, 陳振川., “爐石為水泥熟料與填加料對混凝土特性影響之文獻及國外現況調查研究”, 台灣營建研究中心, pp. 5-31, 1987.
11. R. Helmuth,“Fly Ash in Cement and Concrete”,Portland Cement Association, pp.31-33, 1987.
12. G. J. Osborne, “Durability of Portland blast-furnace slag cement concrete”, Cement and Concrete Composites, Vol. 21, pp. 11-21, 1999.
13. 行政院公共工程委員會,“公共工程高爐石混凝土使用手冊”1999.
14. 詹穎雯, “高爐水泥混凝土之特性”, 台灣營建研究院, pp. 13-88, 2000.
15. A. M. Brandt,“Cement-based Composites: Materials, Mechanical Properties and Performance”, E & FN SPON, pp.116-118, 1995.
16. A. A. Ramezanianpour,“Effect of Curing on the Compressive Strength, Resistance to Chloride-Ion Penetration and Porosity of Concrete Incorporating Slag, Fly Ash or Silica Fume”, Cement and Concrete Composites, Vol.17, pp.125-133, 1995.
17. A. K. Suryavanshi, J. D. Scantlebury, S. B. Lyon,“Mechanism of Friedel’s salt formation in cement rich in tri-calcium aluminate”, Cement Concrete Research, Vol.26, pp.717-727, 1996.
18. R. K. Dhir, M. A. K. El-Mohr, T. D. Dyer,“Chloride binding in GGBS concrete”, Cement and Concrete Research, Vol.26, pp.1767-1773, 1996.
19. B. F. Johannesson, “Diffusion of a mixture of cations and anions dissolved in water”, Cement and Concrete Research, Vol.29, pp.1261-1270, 1999.
20. R. J. Detwiler, O. K. Kjellsen, and O. E. Gjψrv, “ Resistance to chloriede intrusion of concrete cured at different temperatures”, ACI Materials Journal, Vol. 88, pp. 19-24, 1991.
21. R. J. Detweiler and C. A. Fapohunda, “ A comparison of two methods for measuring the chloride ion permeability of concrete”, Cement, Concrete, and Aggregate, Vol. 15, pp. 70-73, 1993.
22. W. Prince, R. Perami, M. Espagne,“Mechanisms involved in the afcccelerated test of chloride permeability”, Cement and Concrete Research, Vol.29, pp.687-694, 1999.
23. 卓世偉, 翁在龍, 楊仲家, 黃然,“以加速氯離子傳導試驗法探討氯離子於混凝土材料中傳輸行為”, 中國土木水利工程學刊, 第十五卷, 第一期, pp.21-32, 2003.
24. 張俊傑,“以加速氯離子穿透試驗評估混凝土耐久性之研究”,國立海洋大學碩士論文, 2003.
25. ASTM 39-99, “Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens”, American Society for Testing and Materials , 1999.
26. M. Cadtellote, C. Andrade, and C. Alonso, “”Modelling of the processes during steady-state migration test: Quantification of transference numbers”, Materials and Structures, Vol. 32, No.1 , pp. 180-186, 1999.
27. Castellote, M.; Andrade, C.; and Alonso, C.,“Mofdeling of the Processes During Steady-State Migration Test: Quantification of Transference Numbers,”Materials and Structures, V. 32, No. 217, pp. 180-186, 1999.
28. C. C. Yang, “Relationship between Migration Coefficient of Chloride Ions and Chage Passed in Steady State,” ACI Materials Journal, V. 101, pp. 124-130, March-April 2004.
29. C. Andrade,“Calculation of chloride diffusion coefficient in concrete from ionic migration measurement”, Cement and Concrete Research, Vol.23, pp.724-742, 1993.
30. L. Tang, “Electrically accelerated methods for determining chloride diffusivity in concrete diffusivity in concrete-current development”﹐Magazine of Concrete Research ,Vol.48, pp.173-179, 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top