跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/07 23:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉文忠
研究生(外文):Wen Chung Liu
論文名稱:Mg-Y-Cu金屬玻璃合金之機械合金製程研究
論文名稱(外文):Formation of Mg-Y-Cu Metallic Glass by Mechanical Alloying
指導教授:李丕耀
指導教授(外文):Pee Yaw Lee
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:104
中文關鍵詞:鎂基機械合金玻璃成形能力
相關次數:
  • 被引用被引用:0
  • 點閱點閱:329
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
本研究應用震動式球磨機來製備Mg85-xY15Cux (X=40~84at.%)非
晶質合金粉末,同時亦探討銅含量對玻璃形成能力(Glass Forming
Ability,GFA)的影響,分析X-ray 繞射實驗所得之結果顯示,在十
小時的球磨後,Mg85-xY15Cux(X=40~84 at.%)粉末皆僅殘存一代表形成
非晶質相之寬廣繞射峰出現,而利用DSC 探討非晶質熱穩定性結果
發現,在Mg85-xY15Cux (X=40~84 at.%)皆有結晶化溫度(Tx)存在,但僅
在X=40~48 at.%之合金粉末具有由玻璃轉化溫度(Tg)及結晶化溫度
(Tx)所界定的過冷液態區(∆T,∆T=Tx -Tg)出現,又對此合金系之原子
半徑差異(∆a)計算顯示∆a 最大值會出現在X= 66 at.%處,但代表GFA
大小的∆T 在此成分範圍內並未出現,此表示以往以∆a 值來評估GFA
高低的經驗法則在Mg85-xY15Cux 非晶質合金系中並不恰當,相對於
此,就Mg85-xY15Cux 成份計算之比半徑差(∆ R,∆ R=∆ a/∆Cu% )顯示
在X=40~48 間之∆ R 值大於X=52~84 at.%者,故在此合金系中玻璃
形成能力的判斷應以比半徑差值進行較為合適。
在真空熱壓成型上選取具∆T 之非晶質合金粉末,分別在Tg 上
10K (Tg+10)的溫度下施以1.2GPa 的壓力並持溫30 分鐘的熱壓處理,
經此處理後可形成直徑10 mm、厚度約1mm 之鎂基非晶質合金塊
材,其硬度值約為350Hv 左右,又經由SEM 觀察塊材橫截面顯示最
VIII
大孔洞小於4~6µm,另從TEM 及X-ray 結果發現塊材基地中已有奈
米結晶相的產生,根據X-ray 繞射圖案及擇區電子繞射圖比對結果鑑
定此結晶相為Mg24Y5。
The purpose of this study was to investigate the amorphization
behavior and to explore the glass forming ability (GFA) of mechanically
alloyed Mg-Y-Cu powders. After 10 hours milling, Mg85-xY15Cux
(X=40~84) powders exhibit a broad diffraction peak in the 2θ range
between 37~43o, which is characteristics of amorphous structure. The
DSC evaluation of the as-milled powders shows the exothermic peaks
corresponding to the crystallization of amorphous structure was existed.
However, the glass transition temperature was only observed for
Mg85-xY15Cux amorphous powders with compositions X=40~48. The
index of GFA as represented by atomic size difference (∆a) was
calculated. Although the maximum value was obtained at composition
X=66, the GFA as indicated by the appearance of supercooled liquid
region was not observed. In contrast, it is noted the GFA of Mg-Y-Cu
amorphous alloys can be represented by the increment of atomic size
difference with Cu content, ∆R (∆R=∆a / ∆Cu%), since the ∆R of
Mg85-xY15Cux (x=40~48%)were larger than that of Mg85-xY15Cux
(X=52~84%). As-milled Mg85-xY15Cux (X=40~48) amorphous powders
were successfully consolidated into bulk samples by vacuum hot pressing
method. The highest Vickers hardness was 350 kg/mm2 and the maximum
porosity is less than 4 μ m. TEM investigation indicated the
nanostructure with the precipitation of Mg24Y5 nanograin from
amorphous matrix was formed for Mg45Y15Cu40 bulk samples.
第一章 前言……………………………………………..………….…..1
第二章 文獻回顧……………………..………………………………...3
2.1 非晶質合金之形成條件…………………...……………..3
2.1.1 實驗歸納法則..………………………………….3
2.1.2 相關理論………………………………………...4
2.2 玻璃形成能力之評估………………….………….………8
2.2.1 過冷液態區..……………………………………10
2.2.2 簡化玻璃轉換溫度……………………………..12
2.2.3γ值……………………………………………...13
2.2.4ΔT*、Kgl 與S 值……………………………….16
2.2.5 原子尺寸………………………………………..17
2.2.6 e/a 與ΔS………………………………………..19
第三章 實驗步驟……………………….……………..………………32
3.1 機械合金處理…………………………………………..32
3.2 真空熱壓成型…………………………………………..32
3.3 特性檢測…………………………………………….….33
3.3.1 X-ray 繞射分析……………………………..33
3.3.2 DSC 熱分析…………………………………33
I
3.3.3 DTA 熱分析…………………………………34
3.3.4 掃描式電子顯微鏡﹝SEM﹞觀察…………34
3.3.5 穿透式電子顯微鏡﹝TEM﹞觀察…………34
3.3.6 硬度測試……………………………………35
第四章 實驗結果……………………….…………………….……..…39
4.1 Mg-Y-Cu 機械合金化處理[Mg85-xY15Cux( X =40~84 at.
%)]...………………………………………………….…39
4.1.1 Mg37Y15Cu48…..……….………….…………..39
4.1.2 Mg5Y15Cu80..………….………….…………...41
4.1.3 Mg85-xY15Cux (X = 40 ~ 84 at.%).……..……41
4.2 鎂基非晶質合金塊材之製備……………….…………43
第五章 討論…………………………….………………….………..…65
5.1 Mg-Y-Cu 非晶質合金之玻璃形成能力…….…………...65
5.1.1 過冷液態區……………………………………..65
5.1.2 簡化玻璃轉換溫度與亂度……………………..66
5.1.3 原子尺寸差異(∆ a)比半徑差(∆ a/∆Cu%)...…...67
5.1.4 ΔT* 、Kgl 及S…………………………………...68
5.2 真空熱壓處理………..…….………………….……….…68
5.3 恆溫結晶及Avranmi exponent…..………………….……70
5.4 結晶活化能…………………………………………….…74
5.4.1 Kissinger Plot…….……………………………..74
5.4.2 JMA Plot………………………………………..75
第六章 結論…………………………….…………………………..….97
附錄一…………………………………………………………………104
1. A Kato, H. Horikiri, A. Inoue and Masumoto, Mater Sci. Eng. ,
A179/A180 (1994) 707
2. A. Inoue, M. Kohinata, A. P. Tsai and T. Masumoto, Mater. Trans. ,
JIM, 30 (1989) 378
3. M. S. Ong, Y. Li, D. J. Blackwood, S. C. Ng and C. H. Kam, J. Alloy.
Compd. , 279 (1998) 252
4. S. G. Kim, A. Inoue and T. Masumoto, Mater. Trans. , JIM, 31 (1990)
929
5. A. Inoue, N. Masumoto and T. Masumoto, Mater. Trans. , JIM, 30
(1989) 863
6. S. G. Kim, A. Inoue and T. Masumoto, Mater. Trans. , JIM, 32 (1991)
875.
7. S. Y. Su, Y. He, G. J. Shiflet and S. J. Poon, Mater Sci. Eng., A185
(1994) 115
8. A. Inoue, T. Nakamura, N. Nishiyama, Mater. Trans. JIM, 33 (1992)
937.
9. A. Kato, A. Inoue, H. Horikiri and T. Masumoto, Mater Trans. JIM,
36 (1995) 977
10. M. Seidel, J. Eckert, E. Zueco-Rodrigo and L. Schultz, J. Non-cryst.
Solids, 205-207 (1996) 514
11. Y. M. Soifer, N.P. Kobelev, I. G. Brodova, A. N. Manukhin, E. Korin
and L. Soifer, Nanostruct. Mater. , 12 (1999) 875
12. K. Ozakt, K. Kobayashi, A. Sugiyama, T Nishio and A. Masumoto, J.
Powd. Powd. Metall., 47 (2000) 423
13. N. Cui, P. He, and J. L. Luo, Acta Materia. , 47 (1999) 3737
99
14. K. Ozaki, A. Matsumoto, A. Sugiyama, T. Nishio and K. Kobayashi,
Mater. Trans. , JIM. , 41 (2000) 1495
15. J. Eckert, M. Seidel, N. Schlorke, A. Kubler and L. Schultz, Mater.
Sci. Forum Vols. , 235-238 (1997) 23
16. A.Inoue, N. Nishiyama and H. M. kimura, Mater. Trans., JIM, 38
(1997) 179.
17. A. Inoue, Mater. Trans. , JIM, 36 (1995) 866
18. A. Inoue, Mater. Sci. Eng., A226-228 (1997) 357
19. A. Inoue, A. Takeuchi and T. Zhang, Metall. Mater. Trans. , A29
(1998) 1779.
20. A. Inoue, Buck Amorphous Alloys. Trans Tech Publications, Zurich,
Swiss, 1998.
21. R. E. Reed-Hill, Physical Metallurgy Principles, PWS, Boston, USA,
1994.
22. D. Turnbull, Contemp. Phys., 10 (1969) 473.
23. G. S. Fulcher, J. Amer. Cerm. Soc., 77 (1925) 3701
24. A. Inoue, T. Zhang, N. Nishiyama, K. Ohba and T. Masumoto, Mater.
Trans. , JIM, 34 (1993)1234
25. A. Peker and W. L. Johnson, Appl. Phys. Lett. , 63 (1993) 2342
26. A. Inoue, Y. Yokoyama, Y. Shinohara and T. Masumoto, Mater.
Trans. , JIM, 35 (1994) 923
27. A. Inoue, T. Zhang and T. Masumoto, J. Non-Cryst. Solids, 156-158
(1993) 473
28. H. H. Hng, Y. Li, S. C. Ng and C. K. Ong, internat. J. Rapid Solid. In
press
29. A. Inoue, K. Kita, T Zhang and T. Masumoto, Mater. Trans., JIM,
30(1989) 722
30. A. Inoue, H. Yamaguchi, T. Zhang and T. Masumoto, Mater. Trans. ,
JIM, 31 (1990) 104
100
31. Y. Li, H. C. E. Price, S. J. Poon and G. J. Shiflet, Phil. Mag. Lett. , 70
(1994) 371
32. A. Inoue, N. Nishyama, T. Zhang and T. Masumoto, Mater. Lett. , 19
(1994) 131
33. X. H. Lin and W. L. Johnson, J. Appl. Phys. , 78 (1995) 6517
34. A. Inoue, J. S. Gook, Mater. Trans. , JIM, 36 (1995) 1180
35. G. Fonteneau, A. Bouaggad and J. Lucas, in: Proc. 4th Int.
Symposium Halide Glasses. Monterey. CA, Jan.1987
36. R. Busch, W. Lin and W. L. Johnson, J. Appl. Phys., 83 (1998) 4134
37. L. J. Chang, Master Thesis, Crystallization Behavior of Zr-Al-Cu-Ni
Bulk Amorphous Alloy Doped with Boron, Kaohsiung, Taiwan,
2003.
38. A. Inoue, Mater. Trans. Japan. Inst. Metals, 36 (1995) 866
39. A. Inoue, Mater. Sci. Eng, A226-228 (1997) 357.
40. A. Inoue, T. Zhang and A. Takeuchi, Mater. Sci. Forum, 269-272
(1998) 855.
41. A. Inoue, A. Takeuchi and T. Zhang, Metall. Mater. Trans., 29A
(1998) 1779.
42. A. Inoue, Acta Mater. , 48 (2000) 279
43. S.S. Fang, X.H. Xiao, L. Xia, W.H. Li, Y.N. Dong, J. Non-Cryst.
Solid. , 321 (2003) 120.
44. S.S. Fang, Z.Q. Zhou, J.L. Zhang, J. Alloys Compd. , 293-295 (1999)
10
45. H.A. Davies, in: B. Cantor (Ed.), Rapidly Quenched Metals. Part III,
Metals Society, London, vol. 1, 1978, p. 1.
46. D. R. Uhlmann, H. Yinnon, in: Glasses Science and Technology, vol.
1, Academic Press, New York, 1983, p. 1
47. H. A. Davies, Phys. Chem. Glasses , 17 (1976) 159
48. Z. P. Lu, C. T. Liu, Acta Mater. , 50 (2002) 3501
101
49. Z. P. Lu, C. T. Liu, Phys. Rev. Lett. , 91(2003) 115505
50. T. A. Waniuk, J. Schroers and W. L. Johnson, Appl. Phys. Lett. , 78(2001) 1213.
51. A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, Acta Mater. , 49
(2001) 2645.
52. A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, J. Mater. Res. , 16
(2001) 2836.
53. T. D. Shen and R.B. Schwarz, J. Mater. Res. , 14 (1999) 2107.
54. T. D. Shen and R.B. Schwarz, Appl. Phys. Lett. , 75 (1999) 49.
55. B. S. Murty and K. Hono, Mater. Trans. , JIM, 41 (2000) 1538.
56. M. C. Weinberg, Thermochim. Acta, 280–281 (1996) 63.
57. M. C. Weinberg, D. R. Uhlmann, E. D. Zanotto. J. Am. Ceram. Soc. ,
72 (1989) 2054.
58. C. V. Thompson, A. L. Greer, F. Spaepen , Acta Metall. , 31 (1983)
1883.
59. L. E. Tanner, R. Ray, Acta Metall. , 27 (1979) 1727.
60. V. I. Tkatch, A. I. Limanovskii, V. Y. Kameneva, J. Mater. Sci. , 32
(1997) 5669.
61. T. Wakasugi, R. Ota, J. Fukunaga , J. Am. Ceram. Soc. , 72 (1992)
3129.
62. I. W. Donald and H. A. Davies, J. Non-Cryst. Solids, 30 (1987) 77
63. Y. Li, S. C. Ng, C. K. Ong, H. H. Hng and T. T. Goh, Scr. Mater. , 36
(1997) 783
64. A. Hruby, Czech. J. Phys. , B22 (1972) 1187
65. M. Saad and M. Poulain, Mater. Sci. Forum, 19-20 (1987) 11
66. X. S. Xiao, S. S. Fang, L. Xia, W. H. Li, Q. Hua, Y. D. Dong, J. Alloy.
Compd. 351 (2003) 324
67. S. Ueno, Y. Waseda, in: W. Lee, R.S. Carbonara (Eds.), Proceedings
of the Rapidly Solidified Materials Conference,1986, p. 153.
102
68. Z. J. Yan, J. F. Li, S. R. He, Y. H. Zhou, Mater. Research Bull. , 38
(2003) 681
69. Q. Jiang, B. Q. Chi and J. C. Li, Appl. Phys. Lett. ,82 (2003) 2984
70. Y. M. Wang, J. B. Qiang, C. H. Wong and C. H. Shek, C. Dong, J.
Mater. Res., 18 (2003) 642
71. U. Mizutani, K. Tanaka, T. Matsuda, N. Suzuki, T. Fukunaga, Y.
Ozaki, Y. Yamada and K. Nakayama, J. Non-Cryst. Solids, 156-158
(1993) 297
72. A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, Mater.
Trans. JIM. 32 (1991) 609
73. 高明駿, 鎂基非晶質合金粉末之合成研究,國立台灣海洋大學碩
士論文(2003)
74. J. W. Christian,”The Theory of Transformations in Metals and
Alloys”, 8. 1982
75. D. V.Louzguine, A. Inoue. ,J. Mat. Sci. , 35 (2000)4195
76. Shuichi Nojima, Hideki Tsutsut, Masaru Urushirsura Wataru Kosaka,
Narundo Kato, and Tamaichi Ashida,”A Dynamic Study of
Crystallization of Poly (ε-caprolactone) and Poly(ε-caprolactone) /
Poly(vinyl Chloride)Blend”, Polymer Journal,18 (1986) 451
77. J. W. Christian,”The Theory of Transformations in Metals and
Alloys”, p. 489, 8. 1982
78. A. Calka, A. P. Radinski, J. Mater. Res., 3 (1985) 59
79. H. E. Kissinger, J. Res. Natl. Bur. Stand., 57 (1956) 217
80. H. R. Wang, Y. L. Gao, G. H. Min, X. D. Hui, Y. F. Ye, Phys. Lett. A
314 (2003) 81
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top