跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/04 23:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:朱定邦
研究生(外文):Ting-Pang Chu
論文名稱:應用模糊理論決定既有鋼筋混凝土橋樑之維修排序
論文名稱(外文):Applications of Fuzzy Theory to Determine Repair Rankings for Existing Reinforced Concrete Bridges
指導教授:梁明德黃然黃然引用關係
指導教授(外文):Ming-Te LiangRan Huang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:158
中文關鍵詞:損傷評估維修排序模糊理論隸屬度
外文關鍵詞:damage evaluationrepair rankingfuzzy theorymembership grade
相關次數:
  • 被引用被引用:2
  • 點閱點閱:257
  • 評分評分:
  • 下載下載:47
  • 收藏至我的研究室書目清單書目收藏:0
摘要

本研究的主要目的在於應用模糊理論決定既有鋼筋混凝土橋樑之維修排序。首先,以比較矩陣構造法估算21項橋樑構件的重要性,並以簡單的海明距離法針對基隆市轄區內十座既有鋼筋混凝土的橋樑損傷程度加以排序,維修排序的結果為:富民 觀音 武德 東勢 中山 中正 光華 尚仁 龍門 中和。其次,為了解決既有鋼筋混凝土橋樑維修排序問題而提出了多級模糊模式識別評估法,並找出橋樑損傷程度在每個等級的最佳相對隸屬度,引用台灣省轄區內五座既有鋼筋混凝土橋樑做為算例,排序結果為:頭前溪橋→大津橋→林邊橋→中彰大橋→雙園大橋,並與D.E.R評估法評估結果相互比較。最後,我們引用AHP法求評價因素權重集結合模糊綜合評判法針對既有鋼筋混凝土橋樑進行維修排序的評估,並以寬界法對相同的5座橋樑進行評估。結果表明兩種方法的排序結果相同。
研究結果顯示所提出的三種模糊理論決定既有鋼筋混凝土橋樑維修排序方法皆具有合理性、可行性及可靠性。本研究所呈現的結果可以做為既有鋼筋混凝土橋樑維修、補強或拆除等工程決策的重要參考。
Abstract

In this article, the principal propose was applying the concept of fuzzy mathematics to determining the repair ranking for existing reinforced concrete (RC) bridges. Firstly, both the comparison matrix method and the D.(degree) E.(extent) R.(relevancy) evaluation method were provided for finding the weighting value and ranking of damage evaluation for ten existing RC bridges in Keelung, Taiwan. The evaluated repair ranking result obtained from the proposed method is: Fuh-min, Guan-in, Wuu-der, Jong-san, Jong-jeng, Shang-ren, Long-men, Jong-her bridges. Secondly, we proposed the multi-pole fuzzy pattern recognition evaluation method to find the optimal relative membership grade of an evaluated bridge attributed to any grade. Five existing RC bridges in Taiwan are adopted as an illustrative example. The repair ranking is the Tou-chyan-shi, Dah-jin, Lin-bian, Jong-jang and Shuang-yuan bridges. The predicted result is compared with the result obtained by the D.E.R. evaluation method. Finally, we proposed the fuzzy synthetic evaluation method, which is used the analytic hierarchy process for determining a factor weight vector, to assess the repair ranking of existing RC bridges. The predicted result is compared with the result obtained by the wide bound method. The predicated results obtained from both the proposed and wide bound methods had the same repair ranking. The present study results indicate that the proposed methods based on the fuzzy mathematics are reasonable, feasible and reliable. The results presented in this research work can be used as a crucial reference of engineering decision making for repair, strengthening or demolition for existing RC bridges.
目錄
頁次

中文摘要 I
英文摘要 II
謝誌 III
目錄 IV
圖目錄 VIII
表目錄 IX
符號說明 XIV


第一章 緒 論 1
1-1 研究動機 1
1-2 研究目的 2
1-3 研究方法 2
1-4 研究內容 4
第二章 比較矩陣構造法求多評價因素的權值及排序 5
2-1前言 5
2-2理論分析 7
2-2.1建立方案集S 7
2-2.2建立評價因素集 C 7
2-2.3建立權重集w 7
2-2.4建立決策特徵值矩陣X 8
2-2.5模糊相對隸屬度矩陣R 8
2-2.6模糊綜合評判:哈明權距離法 9
2-3比較矩陣構造法 9
2-4實例分析 10
2-5討論 15
2-6結論 23
第三章 多級模糊模式識別評估法在既有鋼筋混凝土橋樑 25
維修補強排序的應用
3-1 前言 25
3-2 D.E.R.評估法 26
3-3 橋樑系統決策多級模糊模式識別理論與模型 30
3-4 實例分析 39
3-5 討論 47
3-5.1 加權距離法 47
3-5.2 多級模糊模式識別評估法 51
3-5.3 D.E.R.評估法 52
3-6 結論 56
第四章 橋樑檢測結合模糊綜合評判 58
在既有鋼筋混凝土橋樑維修補強排序之應用
4-1 前言 59
4-2 失效模式 61
4-2.1 抗壓強度 61
4-2.2 碳化深度 62
4-2.3 氯離子濃度 63
4-2.4 腐蝕電位 65
4-3 理論分析 66
4-3.1 建立評價因素集C 66
4-3.2建立評價因素權向量集W 67
4-3.3 建立評價集V 67
4-3.4 建立模糊隸屬函數 67
4-3.5進行單因素模糊評判,建立模糊關係矩陣R 71
4-3.6模糊綜合評判 73
4-3.7 評判指標的處理 73
4-4 實例分析 74
4-5 討論 77
4-6 結論 80
第五章 結論與建議 82
5-1 結論 82
5-2 建議 84
參考文獻 154
參考文獻
1. 呂克明,橋樑損壞評估,博士論文,國立中央大學土木工程學研究所,1992,244pp.
2. 李雲貴,工程結構可靠度分析方法研究,博士論文,大連理工大學土木系, 1990, 147pp.
3. 李青蔚,決策優選比較分析法評估既有鋼筋混凝土橋樑之損傷等級,碩士論文,國立台灣海洋大學河工系,2002,85pp.
4. 林進銘,多目標決策理論決定既有鋼筋混凝土橋樑之維修排序,碩士論文,國立台灣海洋大學河工系,2003,136pp.
5. 吳家合,模糊數學評估既有鋼筋混凝土橋樑之損傷,碩士論文,國立台灣海洋大學河工系,2000,116pp.
6. 洪漢昌,可靠度分析既有鋼筋混凝土結構物之損傷情況,碩士論文,國立台灣海洋大學河工系,2003,106pp.
7. 姚繼濤,服役結構可靠性分析方法,博士論文,大連理工學院土木系,1996年4月, 115 pp.
8. 徐莉,多目標模糊優選理論在投資項目評價中的應用,武漢水利電力大學學報,第32卷,第4期,1990,pp. 94-95。
9. 梁明德、陳正宗、梁智信、王國隆、洪照亮,鋼筋混凝土橋樑腐蝕及使用年限之研究,中興顧問社,1997。
10. 陳守煜,工程模糊集理論與應用,國防工業出版社,1998,pp. 6-31
11. 陳建春,比較矩陣構造法及其在模糊層次分析中的應用,成都科技大學學報,第三期,1989,pp.81-86。
12. 曹居易,對鋼筋混凝土結構破壞評估方法若干問題看法,四川省建築科學研究所,1998,pp.8-12.
13. 楊經宏,用比較矩陣求多指標的權值及排序,系統工程理論與實踐,第一期,1988,pp.19-26.
14. 錢永久,既有鋼筋混凝土橋樑評估與診斷,博士論文,西南交通大學,1992,75pp.。
15. 謝珍芬,多目標(多準則)評估計數之探討及其組織績效評估之應用,碩士學位論文,工業工程研究所,國立清華大學,1989,114pp。
16. Ang AH-S. and Tang WH, Probability Concepts in Engineering Planning and Design, Volume II Decision, Risk, and Reliability, First Edition, John Wiley & Sons, New York, 1984.
17. Benedetto JJ, Frazier NW, eds., Wavelets, Mathematics and Applications, CRC, Boca Raton, Fla; 1993.
18. Brown CB and Yao JTP, “Fuzzy Sets and Structural Engineering”, Journal of Structural Engineering, ASCE, Vol.109, No.5, 1983, pp.1211-1225.
19. Chou KC and Yuan J, “Fuzzy-Bayesien Approach to Reliability of Existing Structures”, Journal of Structural Engineering, ASCE, Vol.119, No.11, 1993, pp.3276-3290.
20. Cogger KO and Yu PL, “Eigenweight Vectors and Least Distance Approximation for Revealed Preference in Pairwise Weight Ratios.”Journal of Optimalization Theory and Applications, Vol.36, No.4, 1985, pp.483-491.
21. Cornell CA, “Bounds on the Reliability of Structural Systems”, J. Struct. Div., ASCE, Vol.93, No. ST1, 1967, pp.171-200.
22. CSIR, Description of Modules and Computer Options, Taiwan Area National Freeway Bureau Bridge Management System. PO Box 395, Pretoria, South Africa, 1994.
23. Chui CK, Introduction to Wavelets, San Diego: Academic; 1992.
24. Ditlevsen O, “Narrow Reliability Bounds for Structural Systems”, J. Struct. Mech., Vol.7 No.4, 1979, pp.453-472.
25. Feng, YS, “A Method for Computing Structural System Reliability with High Accuracy”, Computers & Structures, Vol. 33 No.1, 1989, pp.1-5.
26. Hou Z, Noori M and Amand RSt, “Wavelet-based approach for structural damage detection”, Journal of Engineering Mechanics, ASCE, Vol.126, No.7, 2000, pp. 677-683.
27. Idriss RL, White KR, Woodward CB and Jauregui DV, “Evaluation and testing of a fracture critical bridge”, NDT&E International, Vol.28, No.6, 1995, pp.339-347.
28. Join Engineering Consultant, Shuang-yuan bridge safety testing report, Public Road Bureau, Department of Transportation, Taiwan Provincial Government, March, 1998.
29. Join Engineering Consultant, Tou-chyan-shi bridge safety testing report, Public Road Bureau, Department of Transportation, Taiwan Provincial Government, March, 1998.
30. Join Engineering Consultant, Dah-jin bridge safety testing report, Public Road Bureau, Department of Transportation, Taiwan Provincial Government, March, 1998.
31. Join Engineering Consultant, Jong-jang bridge safety testing report, Public Road Bureau, Department of Transportation, Taiwan Provincial Government, March, 1998.
32. Join Engineering Consultant, Lin-bian bridge safety testing report, Public Road Bureau, Department of Transportation, Taiwan Provincial Government, March, 1998.
33. Join Engineering Consultants “Report on Bridge Testing Engineering in Keelung City.” 2000.
34. Khorramshahgol R and Moustakis VS, “Delphic Hierarchy Process: A Methodology for Priority Setting Derived from the Delphi Method and Analytical Hierarchy Process,”European Journal of Operational Research, Vol. 37, 1988, pp.347-354.
35. Liang MT, Wu JH, and Liang CH, “Applying fuzzy mathematics to evaluating the membership of existing reinforced concrete bridges in Taipei”, Journal of Marine Science and Technology. Vol.8, No.1, 2001, pp.16-29.
36. Liang MT, Wu JH, and Liang CH, “Multiple layer fuzzy evaluation for existing reinforced concrete bridges”, Journal of Infrastructure Systems, ASCE, Vol.7, No.4, 2001a, pp.144-159.
37. Liang MT, Wang HD and Wu JH, “Multiple objection and span evaluation method for damage grade of existing reinforced concrete bridges”, Journal of Marine Science and Technology, Vol. 9, No.2, 2001b, pp.133-144.
38. Liang MT, Chang JW and Li QF, “Grey and regression models predicting the remaining service life of existing reinforced concrete bridges”, The Journal of Grey System, Vol.14, No.3, 2002, pp.291-310.
39. Liang MT, Lin CM and Yeh CJ, “Comparison Matrix Method and Its Applications to Damage Evaluation for Existing Reinforced Concrete Bridges”, Journal of Marine Science and Technology, Vol.11, No.2, 2003, pp.70-82.
40. Liang MT, Zhao GF, Chang CW, Liang CH, “Evaluating carbonation damage to concrete bridge using a grey forecasting model improvement combined with a statistical method”, Journal of the Chinese Institute of Engineers, Vol.24, No.1, 2001, pp.85-94.
41. Liang MT, Lan JJ. “Reliability analysis of an existing reinforce concrete wharf laden in a chloride environment”, Journal of the Chinese Institute of Engineers Vol.25, No.5, 2003, pp.647-658.
42. Li QF, Zhao GF, Liang MT and Chang JW, “Durability damage grey analyzing the concrete carbonation”, The Journal of Grey System, Vol.13, No.1, 2001, pp.81-94.
43. Ramanathan R, “A note on the use of the analytic hierarchy process for environmental impact assessment,” Journal of Environmental Management, Vol.63, 2001, pp.27-35.
44. Song BF, “A numerical Integration Method in Affine Space and A Method with High Accuracy gor Computing Structural System Reliability”, Computers & Structures, Vol. 42 No.2, 1992, pp. 255-262.
45. Saaty TL, “Modeling Unstructured Decision Problems-The Theory of Analytical Hierarchies.” Mathematics and Computers in Simulation, Vol. 20, 1978, pp.147-158.
46. Saaty TL, The Analytic Hierarchy Process, McGraw-Hill International Book Company, New York, 1980.
47. Saaty TL and Hu G, “Ranking by Eigenvector Versus other Methods in the Analytic Hierarchy Process”, Applied Mathematics Letters, Vol.11, No.4, 1998, pp.121-125.
48. Tsou P and Shen MHH, “Structural damage detection and identification using neural networks”, AI AA J. Vol.32, No.1, 1994, pp.176-183.
49. Wu X, Ghabossi J and Garrett JH, “Use of neural networks in detection of structural damage”, Computers and Structures, Vol.42, No.4, 1992, pp. 649-659.
50. Zhao Z and Chen C, “Concrete bridge deterioration diagnosis using fuzzy influence system”, Advances in Engineering Software, Vol.32, 2001, pp.317-325.
51. Zhao Z and Chen C, “A fuzzy system for concrete bridge damage diagnosis”, Computers and Structures, Vol.80, 2002, pp.629-641.
52. Zadeh LA,“Fuzzy Sets.”Information and Control, Vol.8, 1965, pp.338-353
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top