跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/14 05:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊仁杰
研究生(外文):Jen-Chieh Yang
論文名稱:混凝土中鋼筋腐蝕預測模型之研究
論文名稱(外文):Studies of Corrosion Prediction Model of Steel in Concrete
指導教授:梁明德黃然黃然引用關係
指導教授(外文):Ming-Te Liang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:59
中文關鍵詞:腐蝕模型銹蝕率碳化氯化物
外文關鍵詞:corrosion modelcorrosion ratecarbonationchloride
相關次數:
  • 被引用被引用:2
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要目的是研究混凝土中之鋼筋腐蝕對構件耐久性的影響,建立鋼筋腐蝕預測模型來計算得到鋼筋銹蝕率。首先利用鋼筋腐蝕模型推導出鋼筋銹蝕率,並將能士特-愛因斯坦方程式結合腐蝕機制,考慮不同溫度下鋼筋腐蝕率的變化情形。其次理論解釋三個由Andrade and Alonso[2001]提供的現地量測鋼筋腐蝕速率:(a)使用 的圖表從每年平均電阻率的值可以獲得腐蝕電流的平均值。(b)定義鋼筋橫斷面半徑損失的侵入深度可以由紀錄的腐蝕電流和腐蝕開始之後時間的乘積來表示。(c)有害物質侵入深度(碳化或氯化物的飽和點)的前緣取對數圖對腐蝕開始之後的時間取對數之關係圖。研究結果表明:(1)能士特-愛因斯坦方程式結合腐蝕機制所建立的擴散係數,其溫度參數變化值對整體擴散係數影響不大,但對碳化較嚴重的區域和保護厚度較薄的鋼筋混凝土結構物時,溫度影響就會非常明顯。(2)每年具代表性的腐蝕電流值結合天氣情況可以正確地測量現地的腐蝕電流和鋼筋橫斷面的損失。




關鍵字: 腐蝕模型、銹蝕率、碳化、氯化物
The main purpose of this article was studying the corrosion of steel in concrete which impacted on structure durability, and establishing the corrosion prediction model of steel to calculate the corrosion rate of steel. Firstly, deriving the steel corrosion rate using the corrosion model and the Nernst-Einstein equation in combination with corrosion mechanism is to consider the change of steel corrosion rate with different temperatures. Secondly, theoretical elucidation for the three on-site measurements of corrosion rate of reinforcements provided by Andrade and Alonso [2001]:(a)The average value of the corrosion current can be obtained from the values of yearly average resistivity using the graph of . (b) The attack penetration of steel in concrete defined as the loss in cross radius is expressed by the product recorded corrosion current and the time after corrosion started, and (c) The log of penetration depth of (carbonation or chloride threshold) aggressive front is plotted versus the log of the time after corrosion started. The present results of these studies were shown as follows: (1) The variance of temperature parameter of the diffusion coefficient derived by the Nernst-Einstein equation in combination with corrosion mechanism is not influenced to the whole diffusion coefficient. Nevertheless, the temperature influence is very obvious when the RC structure is located in the severe region of carbonation and is of thin cover thickness. (2) The yearly representative value of corrosion current in combination with the weather condition can be measured correctly the corrosion current on-site and the loss in bar cross section.
Keywords:corrosion model, corrosion rate, carbonation, chloride
中文摘要 I
英文摘要 II
謝誌 III
目錄 VI
表目錄 V
圖目錄 IX
符號說明 XII

第一章 緒 論 1
1.1 研究動機 1
1.2 研究目的 1
1.3 研究方法 2
1.4 研究內容 3
第二章 能士特-愛因斯坦方程式在混凝土中鋼筋銹蝕率預測模 4
型之應用
2.1前言 4
2.2混凝土中鋼筋腐蝕模型 6
2.3混凝土中鋼筋腐蝕模型的驗證與分析 14
2.3.1簡化預測模型的合理性 14
2.3.2鋼筋銹蝕率預測模型的影響因素 15
2.4討論 17
2.5結論 22
第三章混凝土結構中鋼筋銹蝕率的理論解釋 24
3.1 前言 24
3.2腐蝕電流-混凝土電阻率之間的關係 24
3.3應用 值計算鋼筋橫斷面的損失 28
3.4傳遞時期的長度計算 31
3.5 結論 34
第四章 結論與建議 36
4.1 結論 36
4.2 建議 37
參考文獻 55
[1] 蔣元駒等,混凝土工程病害與修補加固技術,海洋出版社,1996。
[2] 朱安民,混凝土碳化與鋼筋混凝土耐久性,混凝土,1992年第6期。
[3] 朱安民,混凝土碳化與鋼筋鏽蝕的研究,混凝土及建築構件,1982年第1期。
[4] 牛荻濤、王慶霖和王林科,銹蝕開裂前混凝土中鋼筋銹蝕量的預測模型,工程建築,1996年第4卷。
[5] 徐名濤、王林科和牛荻濤,混凝土中鋼筋腐蝕模型驗証分析,西安建築科技大學學報,1999年第31卷第2期。
[6] Patrick Whiteway, Better Bridges, Nickel, Vol.14, No.1, 1998.
[7] Ahmad S., Bhattacharjee B. and Wason R., Experimental Service Life Prediction of Rebar-Corroded Reinforced Concrete Structure, ACI Materials Journal, Vol.94, No.4, 1997, pp.311-317.
[8] Andrade C. and Alonso C., On-Site Measurements of Corrosion Rate of Reinforcements, Construction and Building Materials, Vol.15, 2001, pp.141-145.
[9] Andrade C. and Alonso C. On-Site Measurements of Corrosion Rate of Reinforcements, Construction and Building Materials, Vol.15, 2001, pp.141-145.
[10] Bard A. J. and Faulkner L. R., Electrochemical Methods, John Wiley Sons, New York, 1980.
[11] Ba ant Z. P., Physical Model for Steel Corrosion in Concrete Sea Structures-Theory, Journal of the Structural Division, ASCE, Vol.105, No.6, 1979, pp.1137-1153.
[12] Bazant Z. P., Physical Model for Steel Corrosion in Concrete Sea Structures-Theory, Journal of the Structural Division, ASCE, Vol.105, ST6, 1979a, pp.1137-1153.
[13] Bazant Z. P., Physical Model for Steel Corrosion in Concrete Sea Structures-Application, Journal of the Structural Division, ASCE, Vol.105, ST6, 1979b, pp.1155-1166.
[14] Bedient P. B., Rifai H. S. and Newell C. J., Ground Water Contamination: Transport and Remediation, 2nd ed., Practice Hall PTR, Englewood Cliffs, NJ, 1999.
[15] Broomfield J. P., Corrosion of Steel in Concrete, E&FN SPON, London, 1997.
[16] Capozucca Roberto, Damage to Reinforced Concrete Due to Reinforcement Corrosion, Construction and Building Materials, Vol.9, No.5, pp.295-303.
[17] Carslaw H. S. and Jaeger J. C., Conduction of Heat in Solids, Oxford University Press, Oxford, 1959.
[18] Carslaw H. S. and Jaeger J. C., Conduction of Heat in Solid, 2nd Edition, Celarendon Press, Oxford, 1990.
[19] Crank J., The Mathematics of Diffusion, Oxford University Press, Oxford, 1975.
[20] Crank J., The Mathematics of Diffusion, Oxford University Press, Oxford, 1975.
[21] Fontana M. G., Corrosion Engineering, Third Edition, McGraw-Hill Book Company, New York, 1987.
[22] Gj rv O.E., Concrete in Oceans, Marine Science Communication, Vol.1, No.1, 1975, pp.51-74.
[23] Gj rv O. E. and Vennesland ., Electrical Resistivity of Concrete in the Oceans, Paper OTC 2803, Ninth Annual Offshore Technology Conference, Houston, Texas, U.S.A., May, 1977, pp.581-588.
[24] Glasstone S., An Introduction to Electrochemistry, D. Van Nostrand Co., Inc., New York, N.Y. 1942.
[25] Glasstone S., An Introduction to Electrochemical Behavior of Steel in Concrete, American Concrete Institute Journal, Vol.61, 1964, pp. 177-188.
[26] Gonzalez J. A., Algaba S. and Andrade C., Corrosion of Reinforcing Bars in Carbonated Concrete, Br. Corros. J., Vol.15, No.3, 1980, pp. 135-139.
[27] Guirguis S., A Basis for Determining Minimum Cover Requirement for Durability, In: Concrete Durability, ACI Detroit, Michigan, 1987.
[28] Gonzalez J. A., Feliu S. and Rodriguez P., Threshold Steel Corrosion Rates for Durability Problems in Reinforced Structures, Corrosion, Vol.53, No.1, 1997, pp.65-71.
[29] Hong D. H., Corrosion and Prevention of Steel in Concrete, Chinese Railway Publisher, Beijing, China, 1998.
[30] Hausmann D. A., Electrochemical Behaviour of Steel in Concrete, American Concrete Institute Journal, Vol.61, 1964, pp.177-188.
[31] Ihekwaba N. M., Hope B. B. and Hansson C. M., Carbonation and Electrochemical Chloride Extraction from Concrete, Cement and Concrete Research, Vol.26, No.7, 1996, pp.1095-1107.
[32] Jin W. J. and Zhao Y. Z., Durability of Concrete Structures, Science Publisher, Bejing, 2002, in Chinese.
[33] Keenan C. W. and Wood J. H., General College Chemistry, 4th Edition, Harper and Row Publishers, Inc., New York, N.Y., 1971.
[34] Laidler K. J. and Meiser J. H., Physical Chemistry, Benjamin/ Cummings Pub. Co., Menlo Park, California, 1982.
[35] Li Q. F., Zhao G. F., Giang M. T. and Chang J. W., Durability Damage Grey Analyzing the Concrete Carbonation, The Journal of Grey System, Vol.13, No.1, 2001, pp.81-94.
[36] Liang M. T., Hong C. L. and Liang C. H., Service Life Prediction of Existing Reinforced Concrete Structures under Carbonation-Induced Corrosion, Journal of the Chinese Institute of Civil and Hydraulic Engineering, Vol.11, No.3, 1999, pp.485-492.
[37] Liang M. T., Qu W. J. and Liao Y. S., A Study on Carbonation in Concrete Structures at Existing Cracks, Journal of the Chinese Institute of Engineering, Vol.23, No.2, 2000, pp.143-153.
[38] Liang M. T., Zhao G. F., Liao Y. S. and Liang C. H., Linearly Unbiased Estimation for the Carbonation Damage of Some Concrete Bridges in Taipei, Journal of Marine Science and Technology, Vol.8, No.2, 2000, pp.78-89.
[39] Liang M. T., Zhao G. F., Chang C. W. and Liang C. H., Evaluating the Carbonation Damage to Concrete Bridges Using A Gray Forecasting Model Combined with A Statistical Method, Journal of the Chinese Institute of Engineers, Vol.24, No.1, 2001, pp.85-94.
[40] Liang M. T., Qu W. and Liang C. H., Mathematical Modeling and Prediction Method of Concrete Carbonation and its Application, Journal of Marine Science and Technology, Vol.10, No.2, 2002, pp. 128-135.
[41] Liang M. T. and Lin S. M., Mathematical Modeling and Applications for Concrete Carbonation, Journal of Marine Science and Technology, Vol.11, No.1, 2003, pp.20-33.
[42] Liu Y. and Weyers R. E., Modeling the Time-to-Corrosion Cracking in Chloride Contaminated Reinforced Concrete Structures, ACI Materials Journal, Vol.95, No.6, 1998, pp.675-681.
[43] Liang M. T. and Lin S. M., Modeling the Transport of Multiple Corrosive Chemicals in Concrete Structures: Synergetic Effect Study, Cement and Concrete Research, Vol.33, 2003, pp.1917-1924.
[44] Lu X., Application of the Nerst-Einstein Equation to Concrete, Cement and Concrete Research, Vol.27, No.2, 1997, pp.293-302.
[45] Maage M., Helland S., Poulsen E., Vennesland O. and Carlsen J. E., Service Life Prediction of Existing Concrete Structures Exposed to Marine Environment, ACI Materials Journal, Vol.93, No.6, 1996, pp. 602-608.
[46] Mallett G. P., State-of-the-Art Review: Repair of Concrete Bridges, Thomes Telford Services Ltd., London, 1994.
[47] Melchers R. E., Mathematical Modeling of the Diffusion Controlled Phase in Marine Immersion Corrosion of Mild Steel, Corrosion Science, Vol.45, 2003, pp.923-940.
[48] Nielsen C.V. and Bicanic N., Radial Fictitious Cracking of Thick- Walled Cylinder Due to Bar Pull-out, Magazine of Concrete Research, Vol.54, No.3, 2002, pp.215-221.
[49] O’Neil P. V., Advanced Engineering Mathematics, Third Edition, Wadsworth Publishing Company, Belmont, California, U.S.A., 1991.
[50] O’Neil P.V., Advanced Engineering mathematics, 5th Edition, Brooks/Cole-Thomson Learning, Inc. USA, 2003.
[51] Papadakis V. G., Vayenas C. G. and Fardis M. N., Fundamental Model and Engineering Investigation of Concrete Carbonation, ACI Material Journal, Vol.88, No.4, 1991a, pp. 363-373.
[52] Papadakis V. G., Vayenas C. G. and Fardis M. N., Experimental Investigation and Mathematical Modeling of the Concrete Carbonation Problem, Chemical Engineering Science, Vol.46, No.56, 1991b, pp.1333-1338.
[53] Papadakis V. G., M. N., Fardis C. G. and Vayenas C. G., Effect of Composition Environmental Factors and Cement-Lime Motar Coating on Concrete Carbonation, Materials and Structures, Vol.25, 1992, pp. 293-304.
[54] Subramanian E. V. and Wheat H. G., Depassivation Time of Steel Reinforcement in A Chloride Environment One-Dimensional Solution, Corrosion, Vol.45, No.1, 1989, pp.43-48.
[55] Saetta A. V., Schrefler B. A. and Vitaliani R. V., 2-D Model for Carbonation and Moisture Heat Flow in Porous Material, Cement and Concrete Research. Vol.25, 1995, pp.1703-1712.
[56] Weyers R. E., Science Life Model for Concrete Structures in Chloride Laden Environment, ACI Materials Journal, Vol.95, No.4, 1998, pp.445-453.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top