|
[1] 蔣元駒等,混凝土工程病害與修補加固技術,海洋出版社,1996。 [2] 朱安民,混凝土碳化與鋼筋混凝土耐久性,混凝土,1992年第6期。 [3] 朱安民,混凝土碳化與鋼筋鏽蝕的研究,混凝土及建築構件,1982年第1期。 [4] 牛荻濤、王慶霖和王林科,銹蝕開裂前混凝土中鋼筋銹蝕量的預測模型,工程建築,1996年第4卷。 [5] 徐名濤、王林科和牛荻濤,混凝土中鋼筋腐蝕模型驗証分析,西安建築科技大學學報,1999年第31卷第2期。 [6] Patrick Whiteway, Better Bridges, Nickel, Vol.14, No.1, 1998. [7] Ahmad S., Bhattacharjee B. and Wason R., Experimental Service Life Prediction of Rebar-Corroded Reinforced Concrete Structure, ACI Materials Journal, Vol.94, No.4, 1997, pp.311-317. [8] Andrade C. and Alonso C., On-Site Measurements of Corrosion Rate of Reinforcements, Construction and Building Materials, Vol.15, 2001, pp.141-145. [9] Andrade C. and Alonso C. On-Site Measurements of Corrosion Rate of Reinforcements, Construction and Building Materials, Vol.15, 2001, pp.141-145. [10] Bard A. J. and Faulkner L. R., Electrochemical Methods, John Wiley Sons, New York, 1980. [11] Ba ant Z. P., Physical Model for Steel Corrosion in Concrete Sea Structures-Theory, Journal of the Structural Division, ASCE, Vol.105, No.6, 1979, pp.1137-1153. [12] Bazant Z. P., Physical Model for Steel Corrosion in Concrete Sea Structures-Theory, Journal of the Structural Division, ASCE, Vol.105, ST6, 1979a, pp.1137-1153. [13] Bazant Z. P., Physical Model for Steel Corrosion in Concrete Sea Structures-Application, Journal of the Structural Division, ASCE, Vol.105, ST6, 1979b, pp.1155-1166. [14] Bedient P. B., Rifai H. S. and Newell C. J., Ground Water Contamination: Transport and Remediation, 2nd ed., Practice Hall PTR, Englewood Cliffs, NJ, 1999. [15] Broomfield J. P., Corrosion of Steel in Concrete, E&FN SPON, London, 1997. [16] Capozucca Roberto, Damage to Reinforced Concrete Due to Reinforcement Corrosion, Construction and Building Materials, Vol.9, No.5, pp.295-303. [17] Carslaw H. S. and Jaeger J. C., Conduction of Heat in Solids, Oxford University Press, Oxford, 1959. [18] Carslaw H. S. and Jaeger J. C., Conduction of Heat in Solid, 2nd Edition, Celarendon Press, Oxford, 1990. [19] Crank J., The Mathematics of Diffusion, Oxford University Press, Oxford, 1975. [20] Crank J., The Mathematics of Diffusion, Oxford University Press, Oxford, 1975. [21] Fontana M. G., Corrosion Engineering, Third Edition, McGraw-Hill Book Company, New York, 1987. [22] Gj rv O.E., Concrete in Oceans, Marine Science Communication, Vol.1, No.1, 1975, pp.51-74. [23] Gj rv O. E. and Vennesland ., Electrical Resistivity of Concrete in the Oceans, Paper OTC 2803, Ninth Annual Offshore Technology Conference, Houston, Texas, U.S.A., May, 1977, pp.581-588. [24] Glasstone S., An Introduction to Electrochemistry, D. Van Nostrand Co., Inc., New York, N.Y. 1942. [25] Glasstone S., An Introduction to Electrochemical Behavior of Steel in Concrete, American Concrete Institute Journal, Vol.61, 1964, pp. 177-188. [26] Gonzalez J. A., Algaba S. and Andrade C., Corrosion of Reinforcing Bars in Carbonated Concrete, Br. Corros. J., Vol.15, No.3, 1980, pp. 135-139. [27] Guirguis S., A Basis for Determining Minimum Cover Requirement for Durability, In: Concrete Durability, ACI Detroit, Michigan, 1987. [28] Gonzalez J. A., Feliu S. and Rodriguez P., Threshold Steel Corrosion Rates for Durability Problems in Reinforced Structures, Corrosion, Vol.53, No.1, 1997, pp.65-71. [29] Hong D. H., Corrosion and Prevention of Steel in Concrete, Chinese Railway Publisher, Beijing, China, 1998. [30] Hausmann D. A., Electrochemical Behaviour of Steel in Concrete, American Concrete Institute Journal, Vol.61, 1964, pp.177-188. [31] Ihekwaba N. M., Hope B. B. and Hansson C. M., Carbonation and Electrochemical Chloride Extraction from Concrete, Cement and Concrete Research, Vol.26, No.7, 1996, pp.1095-1107. [32] Jin W. J. and Zhao Y. Z., Durability of Concrete Structures, Science Publisher, Bejing, 2002, in Chinese. [33] Keenan C. W. and Wood J. H., General College Chemistry, 4th Edition, Harper and Row Publishers, Inc., New York, N.Y., 1971. [34] Laidler K. J. and Meiser J. H., Physical Chemistry, Benjamin/ Cummings Pub. Co., Menlo Park, California, 1982. [35] Li Q. F., Zhao G. F., Giang M. T. and Chang J. W., Durability Damage Grey Analyzing the Concrete Carbonation, The Journal of Grey System, Vol.13, No.1, 2001, pp.81-94. [36] Liang M. T., Hong C. L. and Liang C. H., Service Life Prediction of Existing Reinforced Concrete Structures under Carbonation-Induced Corrosion, Journal of the Chinese Institute of Civil and Hydraulic Engineering, Vol.11, No.3, 1999, pp.485-492. [37] Liang M. T., Qu W. J. and Liao Y. S., A Study on Carbonation in Concrete Structures at Existing Cracks, Journal of the Chinese Institute of Engineering, Vol.23, No.2, 2000, pp.143-153. [38] Liang M. T., Zhao G. F., Liao Y. S. and Liang C. H., Linearly Unbiased Estimation for the Carbonation Damage of Some Concrete Bridges in Taipei, Journal of Marine Science and Technology, Vol.8, No.2, 2000, pp.78-89. [39] Liang M. T., Zhao G. F., Chang C. W. and Liang C. H., Evaluating the Carbonation Damage to Concrete Bridges Using A Gray Forecasting Model Combined with A Statistical Method, Journal of the Chinese Institute of Engineers, Vol.24, No.1, 2001, pp.85-94. [40] Liang M. T., Qu W. and Liang C. H., Mathematical Modeling and Prediction Method of Concrete Carbonation and its Application, Journal of Marine Science and Technology, Vol.10, No.2, 2002, pp. 128-135. [41] Liang M. T. and Lin S. M., Mathematical Modeling and Applications for Concrete Carbonation, Journal of Marine Science and Technology, Vol.11, No.1, 2003, pp.20-33. [42] Liu Y. and Weyers R. E., Modeling the Time-to-Corrosion Cracking in Chloride Contaminated Reinforced Concrete Structures, ACI Materials Journal, Vol.95, No.6, 1998, pp.675-681. [43] Liang M. T. and Lin S. M., Modeling the Transport of Multiple Corrosive Chemicals in Concrete Structures: Synergetic Effect Study, Cement and Concrete Research, Vol.33, 2003, pp.1917-1924. [44] Lu X., Application of the Nerst-Einstein Equation to Concrete, Cement and Concrete Research, Vol.27, No.2, 1997, pp.293-302. [45] Maage M., Helland S., Poulsen E., Vennesland O. and Carlsen J. E., Service Life Prediction of Existing Concrete Structures Exposed to Marine Environment, ACI Materials Journal, Vol.93, No.6, 1996, pp. 602-608. [46] Mallett G. P., State-of-the-Art Review: Repair of Concrete Bridges, Thomes Telford Services Ltd., London, 1994. [47] Melchers R. E., Mathematical Modeling of the Diffusion Controlled Phase in Marine Immersion Corrosion of Mild Steel, Corrosion Science, Vol.45, 2003, pp.923-940. [48] Nielsen C.V. and Bicanic N., Radial Fictitious Cracking of Thick- Walled Cylinder Due to Bar Pull-out, Magazine of Concrete Research, Vol.54, No.3, 2002, pp.215-221. [49] O’Neil P. V., Advanced Engineering Mathematics, Third Edition, Wadsworth Publishing Company, Belmont, California, U.S.A., 1991. [50] O’Neil P.V., Advanced Engineering mathematics, 5th Edition, Brooks/Cole-Thomson Learning, Inc. USA, 2003. [51] Papadakis V. G., Vayenas C. G. and Fardis M. N., Fundamental Model and Engineering Investigation of Concrete Carbonation, ACI Material Journal, Vol.88, No.4, 1991a, pp. 363-373. [52] Papadakis V. G., Vayenas C. G. and Fardis M. N., Experimental Investigation and Mathematical Modeling of the Concrete Carbonation Problem, Chemical Engineering Science, Vol.46, No.56, 1991b, pp.1333-1338. [53] Papadakis V. G., M. N., Fardis C. G. and Vayenas C. G., Effect of Composition Environmental Factors and Cement-Lime Motar Coating on Concrete Carbonation, Materials and Structures, Vol.25, 1992, pp. 293-304. [54] Subramanian E. V. and Wheat H. G., Depassivation Time of Steel Reinforcement in A Chloride Environment One-Dimensional Solution, Corrosion, Vol.45, No.1, 1989, pp.43-48. [55] Saetta A. V., Schrefler B. A. and Vitaliani R. V., 2-D Model for Carbonation and Moisture Heat Flow in Porous Material, Cement and Concrete Research. Vol.25, 1995, pp.1703-1712. [56] Weyers R. E., Science Life Model for Concrete Structures in Chloride Laden Environment, ACI Materials Journal, Vol.95, No.4, 1998, pp.445-453.
|