跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/11 12:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳耐錦
研究生(外文):Nai-Chin Chen
論文名稱:集水區逕流運行時間與運動波-地貌瞬時單位歷線模式之檢討
論文名稱(外文):The investigation of watershed time of concentration equations and kinematic-wave based geomorphic instantaneous unit hydrograph
指導教授:李光敦李光敦引用關係
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:90
中文關鍵詞:集流時間運動波-地貌瞬時單位歷線河寬河渠糙度係數降雨強度
外文關鍵詞:Time of concentrationKW-GIUHchannel widthchannel roughnessrainfall intensity
相關次數:
  • 被引用被引用:1
  • 點閱點閱:455
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究首先針對台灣地區經常使用之集流時間公式,經由水力學的觀點,以數值試驗方式探討此集流時間公式之合適性。研究中發現,角屋公式較能提供合理的集流時間推估值,Kirpich公式與Rziha公式有低估集流時間之情形,而水土保持技術規範(1996)中所列之公式則有高估集流時間之情形。研究中同時應用運動波理論,配合V型漫地流模型,分析集水區之集流時間值。研究結果顯示,由於此V型運動波集流時間公式已考慮集水區中之糙度、降雨強度與幾何因子,且將集水區分為渠流與漫地流不同的逕流機制,因此所推求之集流時間值與相關係數分析方式所推求者最為接近。
有鑑於早期運動波-地貌瞬時單位歷線模式之架構,其河寬與糙度係數之推求方式,未能適切反應其空間變異特性;且模式往往無法合理反應高強度且不均勻降雨事件之逕流情形。因此本研究將原模式中河寬線性遞減之假設,修正為河寬與上游集水面積之指數關係;且藉由渠流坡度之指數關係,以推求糙度係數由上游往下游之遞減情形。研究中並改變推求瞬時單位歷線過程中,降雨強度值之輸入方式。研究結果顯示,上述之模式修正方式,能獲得較佳的模擬結果。
The objective of this study is to investigate the adequacy of the time of concentration (Tc) equations frequently applied in Taiwan. Series numerical tests were used to investigate the applicability of the Tc equations from the hydraulic viewpoint. The results show that the Kadoya equation can, in general, provide a reasonable estimation for the time of concentration. However, the Kirpich equation and the Rziha equation always give a lower estimate, and the Soil Conservation Handbook equation (1996) usually yields a higher estimate. The V-shaped kinematic wave Tc equation is also applied in this study for analysis. The results indicate that the V-shaped kinematic wave Tc equation can adequately account for the watershed hydrologic and geomorphic conditions, because the runoff process has contained the overland-flow state and the channel-flow state, and the equation includes the factors of watershed geometry, roughness condition, and rainfall intensity. Therefore, the time of concentration obtained by the V-KW equation was closer to that obtained by the correlation analysis.
Since channel width and channel roughness used in the KW-GIUH model (Lee and Yen, 1997) couldn’t adequately reflect watershed characteristics, and the model couldn’t well simulate runoff resulting from concentrated heavy rainstorms, the assumptions adopted in the KW-GIUH model were examined. A linear variation of the channel width from upstream to downstream adopted in previous model was changed to a power function of the watershed contributing area. Since the bed load diameter of the channel was usually decrease from upstream to downstream, variation of the channel roughness coefficient was set to relate to the local slope of the channel reach. The way of choosing the temporal rainfall intensity to generate the IUH was revised based on the concept of the watershed time of concentration. The rainfall-runoff simulation results from the revised KW-GIUH model showed better simulations than the original model.
摘要 i
英文摘要 ii
目錄 iii
表錄 v
圖錄 vi
第一章 導論 1
1.1 研究目的 1
1.2 前人研究 1
1.2.1 集流時間之相關研究 1
1.2.2 運動波-地貌瞬時單位歷線理論之相關研究 4
1.2.3 河寬與糙度係數之相關研究 6
1.3 研究方法 8
第二章 集流時間計算公式之檢討 10
2.1 集流時間之定義 10
2.2 集流時間公式 11
2.2.1 集流時間經驗公式 11
2.2.2 集流時間理論公式 14
2.3 數值試驗分析 18
2.3.1 數值試驗條件 18
2.3.2 逕流平均速度檢視 20
2.4 集水區水文紀錄驗證 22
2.4.1 相關分析法之集流時間推求 22
2.4.2 研究集水區地文特性與水文分析 23
2.4.3 結果分析 24
2.5 結果與討論 25
第三章 運動波-地貌瞬時單位歷線模式之檢討 27
3.1 地貌瞬時單位歷線理論 27
3.2 運動波-地貌瞬時單位歷線理論 30
3.2.1 考慮河川網路之逕流運行時間 30
3.2.2 河寬推求方式之檢討 34
3.2.3 渠流糙度係數值推求方式之檢討 35
3.2.4 降雨強度修正方式 36
3.3 模式應用與結果分析 37
3.3.1 研究集水區地文特性分析 37
3.3.2 河寬之推求方式對逕流模擬的影響 37
3.3.3 糙度係數之推求方式對逕流模擬的影響 38
3.3.4 降雨強度之修正對逕流模擬的影響 38
3.3.5 結果與討論 39
第四章 結論與建議 40
4.1 結論 40
4.2 建議 40
參考文獻 41
附表 48
附圖 57
水土保持法相關法規-水土保持技術規範 (1996). 中華水土保持學會編印。
李光敦 (1994). “地面及河渠糙度係數對地相瞬時單位歷線之影響,” 第七屆水利工程研討會論文集, D83-93.
李光敦 (1996). “考慮河川網路之集流時間推求方式-以運動波理論為基礎,” 國科會研究報告NSC85-2211-E-019-009號。
李光敦,楊銘賢 (1998). “上游集水區適用集流時間公式之探討,” 臺灣水利,第46卷,第1期,60-71。
李光敦 (2003). “流域整體規劃河川集水區數值地形資訊系統建立(四),” 國立臺灣海洋大學河海工程研究所研究報告,經濟部水利署水利規劃試驗所委託。
沈榮茂 (1991). “集流時間對合理化公式推估洪峰之影響,” 流域暴雨逕流經理研討會論文集, 177-195.
錢玉珠 (1999). “台灣地區集水區地文特性之初步分析,” 國立台灣海洋大學碩士論文。
楊德良 等 (1989). “德基水庫集水區治理規劃研究報告¾合理化公式之檢討與應用,” 國立臺灣大學水工試驗所報告第99號.
Agnese, C., D’asaro, D. and Giordano, G. (1988). “Estimation of the time scale of the geomorphologic instantaneous unit hydrograph from effective streamflow velocity,” Water Resour. Res., 24(7), 969-978.
Akan, A. O. (1985). Kinematic-wave method for peak runoff estimates. Journal of Transportation Engineering, ASCE 111(4), 419-425.
Akan, A. O. (1986). “Time of concentration of overland flow,” Journal of Irrigation and Drainage Engineering, ASCE, 112(4), 283-292.
Arcement, G. J. and Schneider, V. R. (1989). “Guide for selecting Manning’s roughness coefficients for natural channels and flood plains,” U.S. Geological Survey Water-Supply Paper 2339, Federal Center, Colo.
Bedient, P. B. and Huber, W. C. (1992). Hydrology and Floodplain Analysis. Addison-Wesley, New York, USA.
Ben-Zvi, A., Massoth, S. and Schick, A. P. (1991). “Travel time of runoff creats in Israel,” J. Hydrol., 122, 309-320.
Bray, D. I. (1982). Regime equations for gravel-bed rivers, in Gravel-Bed Rivers, edited by R.D. Hey, J.C. Bathurst, and C. R. Thorne, pp. 517-544, John Wiley, New York.
Chen, C. N. and Evans, R. R. (1977). “Application of kinematic wave method to predict overland peak flows,” Proc. Int. Symp. on Urban Hydrology, Hydraulics, and Sediment Control, Univ. of Kentucky, Lexington, Kentucky, 113-118.
Chen, C. N. and Wong, T. S. W. (1993). “Critical rainfall duration for maximum discharge from overland plane,” J. Hydr. Engrg., ASCE, 119(4) 1040-1045.
Cheng, B. L. M. (1982). “A study of geomorphologic instantaneous unit hydrograph,” Thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, Univ. of Illinois at Urbana-Champaign.
Chen, Y. P., Yang, S. Y., and Chen, K. H. (1996). “River training and utilization of flood plain between levees in Taiwan,” Proceedings of 1st International Conference on New Engineering Concepts for Rivers, Chicago, Illinois, U.S.A., Vol. 1, 853-860.
Chow, V. T. (1964). Handbook of Applied Hydrology. McGraw-Hill, New York.
Clark, C. O. (1945) “Storage and the unit hydrograph,” Tran. ASCE, 110, No. 2261, 1419-1446.
Cowan, W. L. (1956). “Estimating hydraulic roughness coefficients,” Agriculture Engineering, Vol. 37, pp.473-475.
Cundy, T. W. and Tento, S. W. (1985). “Solution to the kinematic wave approach to overland flow routing with rainfall excess given by Philip’s equation,” Water Resour. Res., 21(8), 1132-1140.
Das, A. (2000). “Optimal channel cross section with composite roughness,” Journal of Irrigation and Drainage Engineering, 126(1), 68-72.
Doll, B. A., Wise-Frederick, D.E. Buckner, C.M. and Wilkerson, S.D. (2002). “Hydraulic geometry relationships for urban streams throughout the piedmont of north Carolina,” Journal of the American Water Resources Association, 38(3), pp. 641-651.
Eaglson, P. S. (1970). The catchment, Ch-16, Dynamic Hydrology, McGraw-Hill Book Co., New York.
Feller, W. (1960). “An introduction to probability theory and its application,” 2nd Ed., John Wiley and Sons, Inc., New York, N.Y., Vol. 1, pp. 250.
Gaur, M. L. and Mathur, B. S. (2003). “Modeling event-based temporal variability of flow resistance coefficient,” Journal of Hydrologic Engineering, 8(5), 266-277.
Griffiths, G. A. (2003). “Downstream hydraulic geometry and hydraulic similitude,” Water Resour. Res., 39(4): 1094.
Gupta, V. K., Waymire, E. and Wang, C. T. (1980). “A representation of an instantaneous unit hydrograph from geomorphology,” Water Resour. Res., Vol. 16, pp. 855-862.
Henderson, F. M. and Wooding, R. A. (1964). “Overland flow and groundwater flow from a steady rainfall of finite duration,” Journal of Geophysical Research 69(8), 1531-1540.
Horton, R. E. (1945). “Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology,” Bull. Geol. Soc. Am., 56, 275-370.
Huang, H. Q. and Nanson, G. C. (1997). “Vegetation and channel variation; a case study of four small streams in southeastern Australia,” Geomorphology, Vol. 18, pp. 237-249.
Huang, H. Q., Nanson, G. C. and Fagan, S. D. (2002). “Hydraulic geometry of straight alluvial channels and the principle of least action,” Journal of Hydraulic Research, 40(2), pp.153-160.
Huber, W. C. (1987). Discussion of “Estimating urban time of concentration,” Journal of Hydraulic Engineering, ASCE, 113(1), 122-124.
Huggins, L. F. and Burney, J. R. (1982). Surface runoff, storage and routing. Hydrologic Modeling of Small Watersheds, ed. by C. T. Haan et al., ASCE, Monograph No. 5.
Izzard, C. F. (1944). The surface-profile of overland flow. Transaction of American Geophysical Union 944(25), 959-968.
Jerret, R. D. (1984). “Hydraulics of high-gradient streams,” Journal of Hydrologic Engineering, ASCE, Vol. 110, pp. 1519-1539.
Jerret, R. D. (1987). “Errors in slope-area computations of peak discharges in mountain streams,” Journal of Hydrology, Amsterdam, The Netherlands, Vol. 96, pp. 53-57, 1987.
Jin, C.-X. (1992). “A deterministic gamma-type geomorphologic instantaneous unit hydrograph based on path types,” Water Resour. Res., 28(2), 479-486.
Kadoya, M. (1977). “Concentration time of flood runoff in small river basin,” Proceeding of the third International Hydrology Symposium, Fort Collins, Collorado, USA, 75-89.
Kerby, W. S. (1959). “Time of concentration for overland flow,” Civil Engineering 29(3), 174.
Kirpich, Z. P. (1940). “Time of concentration of small agricultural watersheds,” Civil Engineering 10(6), 362.
Kolberg, F. J. and Howard, A. D. (1995). “Active channel geometry and discharge relations of U.S. piedmont and Midwestern streams: the variable exponent model revisited,” Water Resour. Res., 31: 2353-2365.
Lee, K. T. (1998). “Generating design hydrographs by DEM assisted geomorphic runoff simulation: a case study,” J. Am. Water Resour. Assoc., 34(2), 375-384.
Lee, K. T. and Chang, C. H. (2003). “Incorporating subsurface-flow mechanism into geomorphology-based IUH modeling,” J. Hydrol. (submitted)
Lee, K. T. and Yen, B. C. (1997). “Geomorphology and kinematic-wave based Hydrograph derivation,” Journal of Hydraulic Engineering, ASCE, Vol. 23, pp.73-80.
Leopold, L. B. and Maddock, T. (1953). “The hydraulic geometry of stream channels and some physiographic implication,” United States Geological Survey Professional Paper 252.
Limerinos, J. T. (1970). “Determination of the Manning coefficient from measured bed roughness in natural channels,” U.S. Geological Survey Water-Supply Paper 1898-B, Federal Center, Colo.
Luce, C. H. and Cundy, T. W. (1992). “Modification of the kinematic wave-Philip infiltration overland flow model,” Water Resour. Res., 28(4) 1179-1186.
McCuen, R. H., Wong, S. L. and Rawls, W. J. (1984). “Estimating urban time of concentration,” Journal of Hydraulic Engineering, ASCE, 110(7), 887-904.
Montgomery, D. R. and Gran, K. B. (2001). “Downstream variations in the width of bedrock channels,” Water Resour. Res., 37(6): 1841-1846.
Moody, J. A. and Troutman, B. T. (2002). “Characterization of the spatial variability of channel morphology,” Earth Surface Processes and Landforms, 27: 1251-1266.
Morgali, J. R. and Linsley, R. K. (1965). “Computer analysis of overland flow,” J. Hyd. Div., ASCE, 91(HY3), 81-100.
Nash, J. E. (1957). “The form of instantaneous unit hydrograph,” Intl. Assoc. Sci. Hydrology., Pub.45, Vol.3, 114-121.
Park, C. C. (1977). “World-wide variations in hydraulic geometry exponents of stream channels: an analysis and some observations,” Journal of Hydrology, Vol. 33, pp. 133-146.
Pilgrim, D. H. (1976). “Travel times and nonlinearity of flood runoff from Tracer measurements on a small watershed,” Water Resour. Res., 12(3), 487-496.
Ragan. R. M. and Duru, J. O. (1972). “Kinematic wave monograph for times of concentration,” J. Hydr. Div., ASCE, 98(HY10), 1765-1771.
Rodriguez-Iturbe, I. and Valdes, J.B., “The geomorphologic structure of hydrologic response,” Water Resour. Res., Vol. 15, pp. 1409-1420, 1979.
Sherman, L. K. (1932). “Streamflow from rainfall by the unit-graph method,” Eng. New-Rec., 108, 501-505.
Soil Conservation Service. (1973). A method for estimating volume and rate of runoff in small watersheds. Technical Paper No. 149, USDA-SCS, Washington, DC.
Su, B., Kazama, S., Lu, M. and Sawamoto, M. (2003). “Development of a distributed hydrological model and its application to soil erosion simulation in a forested catchment during storm period,” Hydrological processes, Vol. 17, pp. 2811-2823.
Taiwan Water Conservancy Bureau. (1981). Flood Protection Engineering Manual, Taichung, Taiwan, ROC.
van der Tak, L. D. and Bras, R. L. (1990). “Incorporating hillslope effects into the geomorphologic instantaneous unit hydrograph,” Water Resour. Res., 26(10), pp.2393-2400.
Wohl, E.E. (1998). “Uncertainty in flood estimates associated with roughness coefficient,” Journal of Hydraulic Engineering, Vol, 124(2). pp. 219-223.
Wong, T. S. W. (2001). “Formulas for time of travel in channel with upstream inflow,” Journal of Hydrologic Engineering, ASCE, 6(5), 416-422.
Wong, T. S. W. and Zhou, M. C. (2003). “Kinematic wave parameters and time of travel in circular channel revisited.,” Advances in Water Resources, Vol. 26, pp.417-425.
Wooding, R. A. (1965). “A hydraulic model for the catchment-stream problem, I. kinematic-wave theory,” Journal of Hydrology, 3(3), 254-267.
Woolhiser, D. A. (1969). “Overland flow on a converging surface,” Transactions, American Society of Agricultural Engineers 12(4), 460-462.
Yen, B. C. and Lee, K. T. (1997). “Unit hydrograph derivation for ungaged watersheds by stream order laws,” J. Hydrol. Engrg., ASCE, 2(1), 1-9.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top