跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:1742:3a1e:c308:7608) 您好!臺灣時間:2024/12/08 09:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:孔繁盛
研究生(外文):Fan-Sheng Kong
論文名稱:偏高嶺土混凝土力學與物理性質之研究
論文名稱(外文):Mechanical and physical properties for concrete adding metakaolin
指導教授:張建智
指導教授(外文):J.J. Chang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:344
中文關鍵詞:偏高嶺土熱處理矽灰劈裂強度試驗卜作嵐材料
外文關鍵詞:metakaolinheat treatmentsilica fumespliting tensile strengthpozzolian material
相關次數:
  • 被引用被引用:20
  • 點閱點閱:815
  • 評分評分:
  • 下載下載:83
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
鑑於水泥工業的耗能大、污染也多,本研究討論尋找減少水泥用量的方法,以減少生產水泥過程中對環境的衝擊,降低環境污染,創造優質、環保的材料。本研究以熱處理方式活化高嶺土成為具卜作嵐反應的偏高嶺土,將其取代混凝土中部份水泥,創造新一代穩定、均質的膠結材料。
本研究將偏高嶺土或矽灰(對照組)分別按5%、10%、15%比例取代混凝土中部份的水泥,利用抗壓、劈裂、彈性模數、吸水率、吸水速率、電滲、表面電阻等試驗來探討偏高嶺土混凝土巨觀的力學與物理性質,再利用 SEM 及 EDAX 作膠結材微觀分析與元素定性分析探討混凝土中性化前後微觀性質的變化 。研究結果顯示偏高嶺土混凝土新拌性質隨著取代量增加,需水量也增加,此乃是偏高嶺土的填充效應與經過脫水效應下所呈現的情形,力學性質隨著取代量的增加相較於控制組強度穩定提升,物理性質部分偏高嶺土混凝土整體呈現低孔隙率、低滲透性、高電阻等特性,其中偏高嶺土以15%比例取代水泥時有最佳的力學與物理性質表現。而將偏高嶺土與矽灰混合取代水泥的力學與物理性質表現,與個別添加時效應類似,顯示此兩種卜作嵐材料的相容性甚佳。

關鍵字:偏高嶺土、熱處理、矽灰、劈裂強度試驗、卜作嵐材料
Abstract
The production of cement consumes much energy and results in pollution due to the emission of CO2. In this study, we seek the alternative in a way to reduce the usage of cement. Metakaolin, which is transformed from kaolin using heat treatment, is used to replace part of cement. The performance for such kind of concrete is evaluated.
The replacement percentage for cement using Metakaolin(or silica fume) is 5%, 10% and 15% by cement weight. The compressive strength, splitting tensile strength, water absorption, sorptivity, rapid chloride penetration test, four-probe resistivity were conducted to evaluate the physical and mechanical properties. In addition, scanning electronic microscope (SEM) and EDAX were used to evaluate the change of concrete after carbonation.
The results indicate that as the replacement percentage of cement using Metakaolin increased the amount for required mixing water which is due to the densification effect of metakaolin and water absorption effect. Mechanical properties for Metakaolin concrete had better development as the replacement percentage increased. The Metakaolin concrete also had low porosity, low permeability and high resistivity. Overall speaking, 15% replacement of cement by Metakaolin had the best performance in mechanical properties as well as the physical properties. In addition, mix usage of metakaolin and silica fume to replace part of cement shows good compatibility for these two pozzolian materials.

Key Words:metakaolin,heat treatment,silica fume,splitting tensile strength,pozzolian material
目 錄
中文摘要 i
英文摘要 ii
謝辭 iii
目錄 vii
圖目錄 xi
表目錄 xxi
簡字符號表 xxv
第一章 緒論
1-1 研究背景 4
1-3 研究方法與流程 6

第二章 文獻回顧
2-1 水泥的來源與簡介 11
2-1-1 水泥之化學成份及物理性質 15
2-1-1-1 水泥之製造與組成 15
2-1-1-2 水泥之化學成份與物理性質 16
2-1-2 水泥單礦物之水化作用及機制 19
2-1-3 普通水泥之水化作用及機制 22
2-1-4 卜作嵐材料取代部分水泥之相關研究 27
2-1-4-1 C3S 與卜作嵐材料之反應 28
2-1-4-2 C3A 與卜作嵐材料之反應 30
2-2 卜作嵐材料的機理與應用 31
2-2-1 卜作嵐材料之種類及其反應 33
2-2-1-1 礦粉摻料 34
2-2-1-2 卜作嵐材料 37
2-2-2 卜作嵐材料歷年研究 44
2-2-3 提升卜作嵐活性之方法 47
2-2-4 量測卜作嵐活性之方法 55
2-2-5 核磁共振技術 60
2-2-6 卜作嵐材料綜合影響機理 64
2-3 矽灰的物化特性 67
2-3-1 矽灰來源及特性 67
2-3-2 矽灰的反應機理 69
2-3-3 矽灰的物性 70
2-4 高嶺土的物化特性 75
2-4-1 高嶺土成分分析 75
2-4-2 高嶺土的晶相與儀器分析 78
2-4-3 偏高嶺土的化學鍵結--配位數關係 84
2-4-3-1 分子形狀-VSEPR理論 85
2-4-3-2 配位數與結構之關係 86
2-4-4 高嶺土的化學結構 88

第三章 試驗規劃
3-1 材料分析 94
3-2 試驗儀器 106
3-2-1 巨觀結構試驗儀器 106
3-2-2 微結構分析儀器 116
3-3 試驗項目、原理及方法 118
3-2-1 漿體標準稠度試驗 118
3-3-2 凝結時間試驗 120
3-3-3 細骨材之含水量、比重、面乾飽和水量及表面水量之試驗 121
3-3-4 粗骨材之含水量、比重、面乾飽和水量及表面水量之試驗 124
3-3-5 骨材標準篩分析 126
3-3-6 骨材單位體積重量試驗 128
3-3-7 粗骨材磨損試驗 129
3-3-8 混凝土坍度試驗 130
3-3-9 抗壓強度試驗 132
3-3-10 劈裂強度試驗 133
3-3-11 靜彈性模數試驗 134
3-3-12 吸水率試驗 135
3-3-13 吸水速率試驗 136
3-3-14 電滲試驗 137
3-3-15 電阻值量測試驗 140
3-3-16 掃瞄式電子顯微鏡觀察法 141
3-4 試體製作 147
3-5 混凝土之應力-應變行為 149
3-5-1 彈性模數 151
3-5-2 混凝土彈性模數的影響因素 153
3-5-3 動彈性模數 155
3-6 SEM原理與設備 156
3-6-1 掃描式電子顯微鏡 156
3-6-2 真空的需求 158
3-7 中性化的機理 160
3-8 中性化速度 162
3-9 混凝土的傳輸機理 164
3-9-1 混凝土的孔隙結構 164
3-9-2 混凝土的透水性 165
3-10 電滲試驗機理 167
3-11 電阻試驗機理 169

第四章 試驗結果與分析
4-1 材料外觀與特性 171
4-2 新拌性質 177
4-2-1 坍度 177
4-2-2 凝結行為 183
4-3 力學性質 193
4-3-1 抗壓強度 193
4-3-2 劈裂強度 207
4-3-3 彈性模數 218
4-4 物理性質 220
4-4-1 吸水率 220
4-4-2 吸水速率 223
4-4-3 電滲試驗性質 233
4-4-4 電阻值 245
4-4-5 電阻值與電滲量之間的關係 256
4-5 交互比較 257
4-5-1 新拌性質試驗值比較 257
4-5-2 硬固性質試驗值比較 261
4-6 EDAX觀察 275
4-7 SEM微觀分析 293

第五章 結論與建議
5-1 結論 306
5-2 建議 309

第六章 參考文獻
6-1 英文文獻(按字母順序排列) 311
6-2 國內文獻(按照作者姓名筆畫排列) 324
6-3 學位論文(按照作者姓名筆畫排列) 326
6-4 大陸文獻(按照作者姓名筆畫排列) 328
6-5 ASTM參考規範(按號次順序排列) 330
6-6 CNS參考規範(按總號順序排列) 331
中英文名詞對照 333
口試委員意見修訂表 341
作者簡歷 344
第六章 參考文獻
6-1 英文文獻(按字母順序排列)
1.ACI Committee 226 , ”Silica fume in concrete” , ACI Materials Jaural , March-April , pp.158-166 , 1987.
2.A. Demirbas , S. Karslioglu , A. Ayas , “Utilization of lignite ash in concrete mixture” , Cement and Concrete Research , Vol.25 , No.8 , pp.1610-1614 , 1995.
3.A.H. Asbridge , C.L. Page , M.M. Page , “Effects of metakaolin, water/binder ratio and interfacial transition zones on the microhardness of cement mortars” , Cement and Concrete Research , Vol.32 , No.9 , pp.1365-1369 , 2002.
4.A.H. Asbridge , G.A. Chadbourn , C.L. Page , “Effects of metakaolin and the interfacial transition zone on the diffusion of chloride ions through cement mortars” , Cement and Concrete Research , Vol.31 , No.11 , pp.1567–1572 , 2001.
5.A.K. Chakraborty , “DTA study of preheated kaolinite in the mullite formation region” , Thermochimica Acta , Vol.398 , No.2 , pp.203-209 , 2003.
6.A.M. Sharara , H.El-Didamony , E. Ebied , A. El-Aleem , “Hydration characteristics of b-C2S in the presence of some pozzolanic materials” , Cement and Concrete Research , Vol.24 , No.5 , pp.966-974 , 1994.
7.A.R. Brough , C.M. Dobson , I.G. Richardson , G.W. Groves , “A study of the pozzolanic reaction by solid-state 29Si nuclear magnetic resonance using selective isotopic enrichment” , Journal of Materials Science , Vol.30 , pp.1671-1678 , 1995.
8.A. Ray , E.R. Cantrill , M.G. Steven , L. Aldridge , ”Use of DTA to determine the effect of mineralizers on the cement-quartz hydrothermal reactions. Part 2.Clay addition ” , Thermochimica Acta , Vol.250 , No.1 , pp.189-195 , 1995.
9.B.B. Hope , K.Ip. Alan , D.G. Manning , “ Corrosion and electrical impedance in concrete ” , Cement and Concrete Research , Vol.15 , pp.525-534 , 1985.
10.B.K. Marsh , R. L. Day , “Pozzlanic and cementitious reactions of fly ash in blended cement pastes” , Cement and Concrete Research , Vol.18 , No.3 , pp.301-310 , 1987.
11.B.P. Hughes , M.N.A. Al-Ani , ”PFA fineness and it’s use in concrete” Magazine of Concrete Research , Vol.41 , No.147 , pp.99-105 , 1989.
12.C. Alonso , C. Andrade , J.A. Gonzalez , “ Relation between resistivity and corrosion rate of reinforcements in carbonation mortarmade with several cement types ” , Cement and Concrete Research , Vol.8 , pp.687-698 , 1988.
13.C.He , B. Osback , E. Makovicky , “Pozzolanic reactions of six principal clay minerals:activation, reactivity assessments and technologicaleffects” , Cement and Concrete Research , Vol.25 , No.8 , pp.1691-1702 , 1995.
14.C. He , E. Makovicky , B. Osback , “Thermal treatment and pozzolanic activity of sepiolite” , Applied Clay Science , Vol.10 , No.6 , pp.337-349 , 1996.
15.C. Plowaman , J. G. Cabbrra , “Mechanism and kinetics of hydration of C3A and C4AF, extracted from cement” , Cement and Concrete Research , Vol.14 , No.2 , pp.238-248 , 1984.
16.C.S. Poon , L. Lam , S.C. Kou , Y.L. Wong , Ron Wong , “Rate of pozzolanic reaction of metakaolin in high-performance cement pastes” , Cement and Concrete Research , Vol.31 , pp.1301-1306 , 2001.
17.C.S. Poon , S. Azhar , M. Anson , Y.L. Wong , “Performance of metakaolin concrete at elevated temperatures” , Cement and Concrete Composites , Vol.25 , pp.83-89 , 2003.
18.C. Shi , R.L. Day , “Chemical activation of blend cements made with lime and natural pozolans” , Cement and Concrete Research , Vol.23 , No.6 , pp.1389-1396 , 1993.
19.C. Shi , R.L. Day , “Acceleration of the reacyivity of fly ash by chemical activation” , Cement and Concrete Research , Vol.25 , No.1 , pp.15-21 , 1995.
20.C. Tashiro , K. Ikeda , Y. Inoue , “Evaluation of pozzolanic activity by the electric resistance measurement method” , Cement and Concrete Research , Vol.24 , No.6 , pp.1133-1139 , 1994.
21.D. Bonen , K.H. Khayat , “Characterization and pozzolanic properties of silica fume stored in an open pond” , Cement and Concrete Research , Vol.25 , No.2 , pp.395-407 , 1995.
22.D.M. Roy , P. Arjunan , M.R. Silsbee , “Effect of silica fume, metakaolin, and low-calcium fly ash on chemical resistance of concrete” , Cement and Concrete Research , Vol.31 , pp.1809-1813 , 2001.
23.D.R.G. Mitchell , I. Hinczak , R.A. Day , “ Interaction of silica fume with calcium hydroxide solutions and hydrated cement pastes” , Cement Concrete Research , Vol.28 , No.11 , pp.1571-1584 , 1998.
24.D.S. Klimesch , A. Ray , “DTA、TGA of unstirred autoclaved metakaolin lime quartz slurries. The formation of hydrogarnet” , Thermochimica Acta , Vol.316 , pp.149-154 , 1998.
25.D. Whiting , “Rapid measurement of the chloride permeability of concrete” , Public Roads , Vol.45 , No.3 , pp.101-112 , 1981.
26.E.M. Gartner , K.E. Kurtis , P.J.M. Monteiro , “Proposed mechanism of C-S-H growth tested by soft X-ray microscopy” , Cement and Concrete Research , Vol.30 , No.5 , pp.817-822 , 2000.
27.E.Peris-Mora , J. Paya , J.Monzo , “Influence of different sized fractions of a fly ash on workability of mortars” , Cement and Concrete Research , Vol.23 , No.4 , pp.917-924 , 1993.
28.E.W. Hansen , H.C. Gran , Y. Machabee , ”FLR technique exchange of methanol/fluorescent dye with water in water saturated cement paste examined by NMR” , Cement and Concrete Research , Vol.30 , pp.535-541 , 2000.
29.F. Moises , C. Joseph , “Pore size distribution and degree of hydration of metakaolin—cement pastes” , Cement and Concrete Research , Vol.30 , pp.561-569 , 2000.
30.F. Puertas , A. Fernandez-Jimenez , “Mineralogical and microstructural characterization of alkali-activated ash/slag pastes” , Cement and Concrete Composites , Vol.25 , pp287-292 , 2003.
31.F.R. Moise´s , C. Joseph , “The effect of temperature on the hydration rate and stability of the hydration phases of metakaolin–lime–water systems” , Cement and Concrete Research , Vol.32 , pp.133-138 , 2002.
32.G.J.Z. Xu , D.F Watt , P.P. Hudec , “Effectiveness of mineral admixtures in reducing ASR expansion” , Cement and Concrete Research , Vol.25 , No.6 , pp.1225-1236 , 1995.
33.G.W. Groves , I.G. Richardson , “Microcrystalline calcium hydroxide in pozzolanic cement pastes” , Cement Concrete Research , Vol.24 , No.6 , pp.1191-1196 , 1994.
34.H.A.Toutanji , T. El-Korchi , “The influence of silica fume on the compressive strength of cement paste and mortar” , Cement and Concrete Research , Vol.25 , No.7 , pp.1591-1602 , 1995.
35.H. Biricik , F. Akoz , I. Berktay , A.N. Tulgar , “Study of pozzolanic properties of wheat straw ash” , Cement and Concrete Research , Vol.29 , No.1 , pp.637-643 , 1999.
36.He , C. , E. Makovicky , B. Osback , “Thermal treatment and pozzolanic activity of Na- and Ca-montmorillonite” , Applied Clay Science , Vol.10 , No.2 , pp.351-368 , 1996.
37.H. Zanni , M. Cheyrezy , V. Maret , “Investigation of hydration and pozzolanic reaction in reactive powder concrete (RPC) using 29Si NMR” , Cement and Concrete Research , Vol.26 , No.1 , pp.93-100 , 1996.
38.I.G. Richardson , ”The nature of C-S-H in hardened cements” , Cement and Concrete Research , Vol.29 , pp.1131-1147 , 1999.
39.I.L.H.Hansson , C.M. Hansson , “ Electrical resistivity measurements of portland cement based materials ” , Cement and Concrete Research , Vol.13 , No.5 , pp.675-683 , 1983.
40.J.B.S. Wild , “Investigation of the temperature change and heat evolution of mortar incorporating PFA and metakaolin” , Cement and Concrete Composites , Vol.24 , pp.201-209 , 2002.
41.J.B.S. Wild , B.B. Sabir , “Sorptivity and strength of air-cured and water-cured PC–PFA–MK concrete and the influence of binder composition on carbonation depth” , Cement and Concrete Research , Vol.32 , pp.1813-1821 , 2002.
42.J.I.Escalante , G. Mendoza , H. Mancha , J. Lopez , G. Vargas , “Pozzolanic properties of a geothermal silica waste material” , Cement and Concrete Research , Vol.29 , No.8 , pp.623-625 , 1999.
43.J.M.Khatib , S. Wild , ”Sulphate resistance of metakaolin mortor” , Cement and Concrete Research , Vol.28 , No.1 , pp.83-92 , 1998.
44.J. Monzo , J. F. Paya , M. V. Borrachero , A. Corcoles , “Use of sewage ash (SSA) – cement admixtures in mortars” , Cement and Concrete Research , Vol.26 , No.9 , pp.1389-1398 , 1996.
45.J. Monzo , J. Paya , E. Peris-Mora , “A preliminary study on fly ash granulometric influence on mortar strength” , Cement and Concrete Research , Vol. 24 , No. 4 , pp.791-796 , 1994.
46.J. Paya , J. Monzo , M. V. Borrachero , E. Peris , “Mechanical treatment of fly ash. Part I: Physico-chemical characterization of ground fly ashes” , Cement and Concrete Research , Vol.25 , No.7 , pp.1469-1479 , 1995.
47.J. Paya , J. Monzo , M. V. Borrachero , E. Peris , E. Gonzalez-Lopez , “Mechanical treatment of fly ash. Part Ⅲ :studies on strength development of ground fly ash (GFA)-cement mortars” , Cement and Concrete Research , Vol.27 , No.9 , pp.1365-1377 , 1997.
48.J. Paya , M.V. Borrachero , J. Monzo , M. Bonilla , “Properties of portland cement mortars incorporating high amounts of oil-fuel ashes” , Waste Management , Vol.19, No.1 , pp.1-7 , 1999.
49.J.Pera , R. Boumaza , J. Ambroise , “Development of a pozzolanic pigment from red mud” , Cement and Concrete Research , Vol.27 , No.10 , pp.1513-1522 , 1997.
50.J.S. Lumley , R.S. Gollop , G.K. Moir , H.F.W. Tayor , “Degrees of reaction of the slag in some blends with portland cements” , Cement and Concrete Research , Vol.26 , No.1 , pp.139-151 , 1996.
51.K.Erdogdu , P. Turker , “Effect of fly ash particle size on strength of portland cement fly ash mortars” , Cement and Concrete Research , Vol.28 , No.9 , pp.1217-1222 , 1998.
52.K.O. Ampadu , T. Kazuyuki , “Characterization of ecocement pastes and mortars produced from incinerated ashes” , Cement and Concrete Research , Vol.31 , No.3 , pp.431-436 , 2001.
53.K. Ogawa , H. Uchikawa , K. Takemoto , I. Yasui , “The mechanism of the hydration in the system C3S-Pozzolana” , Cement and Concrete Research , Vol.10 , No.5 , pp.683-696 , 1980.
54.K.S. Wang , K.L. Lin , T.Y. Lee , B.Y. Tzeng , “The hydration characteristics when C2S is presentin MSWI fly ash slag” , Cement and Concrete Composites , Vol.26 , pp.323-330 , 2004.
55.L. Courard , A. Darimont , M. Schouterden , F. Ferauche , X. Willem , R. Degeimbre , “Durability of mortars modified with metakaolin” , Cement and Concrete Research , Vol.33 , pp.1473-1479 , 2003.
56.M. Cheriaf , J.C. Rocha , J. Pera , “Pozzolanic properties of pulverized coal combustion botton ash” , Cement and Concrete Research , Vol.29 , No.1 , pp.1387-1391 , 1999.
57.M. Frías , M.I.Sánchez de Rojas , J. Cabrera , “The effect that the pozzolanic reaction of metakaolin has on the heat evolution in metakaolin-cement mortars” , Cement and Concrete Research , Vol.30 , pp.209-216 , 2000.
58.M.H. Zhang , R. Lastra , V.M. Malhotra , “Rice-husk ash paste and concrete: some aspects of hydration and the microstructure of the interfacial zone between the aggregare and paste” , Cement and Concrete Research , Vol.26 , No.6 , pp.963-977 , 1996.

59.M.H. Zhang , V.M. Malhorta , “Characteristics of a thermally activated alumino-silicate pozzolanic material and its use in concrete” , Cement and Concrete Research , Vol.25 , No.8 , pp.1713-1725 , 1995.
60.M.I. Sanchez de Rojas , M.Frias , “The pozzolanic activity of different materials , its influence on the hydration heat in mortars” , Cement and Concrete Research , Vol.26 , No.2 , pp.203-213 , 1996.
61.M. Singh , M. Garg , “Cementitious binder from fly ash and other industrial wastes” , Cement and Concrete Research , Vol.29 , No.1 , pp. 309-314 , 1999.
62.M. Oriol , J. Pera , “Pozzolanic activity of metakaolin under microwave treatment” , Cement and Concrete Research , Vol.25 , No.2 , pp.265-270 , 1995.
63.N. Banthia , C. Yan , “Bond-slip characterristics of steel fibers in high reactivity %metakaolin (HRM) modified cement-based matrices” , Cement and Concrete Research , Vol.26 , No.5 , pp.657-662 , 1996.
64.N.J. Colenman,W.R. Mcwhinnie , “The solid state chemistry of metakaolin-blended ordinary portland cement” , Journal of Materials Science , Vol.35 , pp2701-2710 , 2000.
65.N.J. Saikiaa , P. Sengupta , P.K. Gogoi , P.C. Borthakur , “Cementitious properties of metakaolin–normal Portland cement mixture in the presence of petroleum effluent treatment plant sludge” , Cement and Concrete Research , Vol.32 , pp.1717-1724 , 2002.

66.N.J. Saikia , P. Sengupta , P.K. Gogoi , P.C. Borthakur , “Hydration behaviour of lime–co-calcined kaolin–petroleum effluent treatment plant sludge” , Cement and Concrete Research Vol.32 , pp.297-302 , 2002.
67.N.R. Buenfeld , J.B. Newman , C.L. Page , “ The resistivity of mortars immersed in sea-water ” , Cement and Concrete Research , Vol.16 , pp.511-524 , 1986.
68.P.K. Mehta , P.J.M. Monteior , Concrete Structures , Properties and Materials , 2nd Edition , Prentice Hall Inc., New Jersey , 1993.
69.Q. Guangren , L. Yuxiang , Y. Facheng , S. Rongming , “Improvement of metakaolin on radioactive Sr and Cs immobilization of alkali-activated slag matrix” , Journal of Hazardous Materials B92 , pp.289-300 , 2002.
70.Q. Yu , K. Sawayama , S. Sugita , M. Shoya , Y. Isojima , “The reaction between rice husk ash and Ca(OH)2 solution and the nature of its product” , Cement and Concrete Research , Vol.29 , No.3 , pp.37-43 , 1999.
71.R. Cioffia , L. Maffucci , L. Santoro , “Optimization of geopolymer synthesis by calcinations and polycondensation of a kaolinitic residue” , Resources, Conservation and Recycling , Vol.40 , pp.27-38 , 2003.
72.R.L. Day , C. Shi , “Influence of the fineness of pozzolan on the strength of lime natural-pozzolan cement pastes” , Cement and Concrete Research , Vol.24 , No.8 , pp.1485-1491 , 1994.
73.R.V. Ranganath , B. Bhattacharjee , S. Krishnamoorthy , “Influence of size fraction of ponded ash on its pozzolanic activity” , Cement and Concrete Research , Vol.28 , No.5 , pp.749-761 , 1998.
74.R. Wasserman , A. Bentur , “Effect of lightweight fly ash aggregate microstructure on the strength of concretes” , Cement and Concrete Research , Vol.27 , No.4 , pp.525-537 , 1997.
75.S. Chatterji , N. Thaulow , P. Christensen , ”Pozzolanic activity of byproduct silica fume from ferro-silicon production” , Cement and Concrete Research , Vol.12 , pp.781-784 , 1982.
76.S.D. Wang , K.L. Scrivener , “Hydration products of activated slag cemenr” , Cement and Concrete Research , Vol.25 , No.3 , pp.561-571 , 1995.
77.S. Grzeszczyk , G. Lipowski , “Effect of content and particle size distribution of high-calcium fly ash on the rheological properties of cement pastes” , Cement and Concrete Research , Vol.27 , No.6 , pp. 907-916 , 1997.
78.S. Hanehara , F. Tomosawa , M. Kobayakawa , K. Hwang , “Effects of water/powder ratio, mixing ratio of fly ash, and curing temperature on pozzolanic reaction of fly ash in cement paste” , Cement and Concrete Research , Vol.31 , pp.31-39 , 2001.
79.S. Mindess , J. F. Young , “Concrete” , 2nd Edition , Pearson Education , Inc. , Upper Saddle River , N. J. , 1981.
80.S. Salvador , “Pozzolanic properties of flash-calcined kaolinite:a comparative study with soak-calcined products” , Cement and Concrete Research , Vol.25 , No.1 , pp.102-112 , 1995.
81.S. Wild , B. B. Sabir , J. M. Khatib , “Factors influencing strength development of concrete containing silica fume” , Cement Concrete Research , Vol.25 , No.7 , pp.1567-1580 , 1995.
82.S.Wild , J. M. khatib , “Portlandite consumption in metakaolin cement pastes and mortars” , Cement and Concrete Research , Vol.27 , No.1 , pp.137-146 , 1997.
83.S. Wild , J.M. Khatib , A. Jones , ”Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete” , Cement and Concrete Research , Vol.26 , No.10 , pp.1537-1544 , 1996.
84.T. Mohammadi , A. Pak , “Making zeolite A membrane from kaolin by electrophoresis” , Microporous and Mesoporous Materials , Vol.56 , pp.81-88 , 2002.
85.T. Ramlochan , M. Thomasa , K.A. Gruber , “The effect of metakaolin on alkali-silica reaction in concrete” , Cement and Concrete Research , Vol.30 , pp339-344 , 2000.
86.V.G. Papadakis , C.G. Vayenas , M.N. Fardis , “Fundamental Modelingand experimental investigation of concrete carbonation” , ACI Materials Journal , No.88 , pp.363-373 , July-August , 1991.
87.V.S. Ramachandran , “Alkali-aggregate expansion inhibition admixtures” , Cement and Concrete Composites , Vol.20 , No.1 , pp.149-161 , 1998.
88.W.J. McCarter , D. Tran , “Monitoring pozzolanic activity by direct activation with calcium hydroxide” , Construction and Building Materials , Vol.10 , No.3 , pp.179-184 , 1996.
89.X. Qian , Z. Li , “The relationships between stress and strain for high-performance concrete with metakaolin” , Cement and Concrete Research , Vol.31 , pp.1607-1611 , 2001.
90.Z. Chengzhi , W. Aiqin , T. Mingshu , “The filling role of pozzolanic material” , Cement and Concrete Research , Vol.26 , No.6 , pp.943-947 , 1996.











6-2 國內文獻(按照作者姓名筆畫排列)
91.Donald R.Askeland(譯者 蔡丕樁、蔡明雄、陳文照、廖金喜) ” 材料科學工程 ” ,高立圖書有限公司,1999。
92.Lawrence H.Van Vlack(譯者 金重勳)”工程材料學原理”,復文書局。主編:符芳 ,副主編;錢士英 王永逵,”景觀.建築工程材料學”,地景企業股份有限公司,1996。
93.Willian D.Callister(譯者 陳文照.曾春風.游信和)”材料科學工程”,金華科技圖書股份有限公司,1996。
94.Willian F.Smith(譯者 李春穎、許煙明、陳忠仁)”材料科學與工程”,McGraw-Hill Inc,1994。
95.Zbigniew D.Jastrzebski(譯者 李文福)”工程材料的本質與性質”,茂昌圖書有限公司,1992。
96.”中國建築工業出版社與中國矽酸鹽學會”,矽酸鹽辭典,1983。
97.王櫻茂,”混凝土構造物的耐久性系列鹼骨材反應(Ⅰ)中性化(Ⅱ)”,2000。
98.汪建民,”陶瓷技術手冊”,中華民國產業科技發展協進會、中華民國粉末冶金協會,1994。
99.林炳炎,”矽灰在混凝土中概論”,現代營建,pp.59-66,1988。
100.林維明,”混凝土之滲透性現象及其影響因素之探討”,防蝕工程,Vol.7,No.1,pp.26 -45 ,1993。
101.施宇豐,”工程材料解析”,金華科技圖書股份有限公司,1994。
102.苗伯霖,”波索蘭材料導致混凝土中性化問題之探討”,營建知訊,Vol.165,pp.20 -25 ,1996。
103.通和夫,”核次共振之實用CW、FTIR、NMR的利用法”,復漢出版社,1985。
104.湛淵源、黃兆龍,”混凝土電阻性質與氯離子電滲行為之探討”,中國土木水利工程學刊,Vol.13,No.2,pp.293 -302 ,2001。
105.郭淑德,”台電飛灰利用與發展”,特殊水泥混凝土研討會,1991。
106.義田義賀,”核磁共振的基礎”,復漢出版社,1985。
107.劉國雄、林樹均、李勝隆、鄭晃忠、業均蔚 編著”工程材料學”,金華科技圖書股份有限公司。
108.鍾松政,”固態核磁共振光譜在沸石觸媒研究之應用”,觸媒與製程,中國技術服務社觸媒研究中心,1994。




6-3 學位論文(按照作者姓名筆畫排列)
109.池彩綾,”電催化反應之應用與研究” 國立台灣師範大學化學研究所碩士論文,2002。
110.沈得縣,”高爐熟料與飛灰之卜作嵐反應機理及對水泥漿體巨微觀性質影響之研究”,國立台灣工業技術學院博士論文,1991。
111.林利國,”稻殼灰性質與混凝土材料上之利用”,國立台灣工業技術學院碩士論文,1989。
112.邱國維,” 鋼筋在飛灰、矽灰混凝土中腐蝕行為之研究”,國立台灣海洋大學河海工程學系碩士學位論文,1993。
113.邱俊萍,”利用高爐爐渣製成無機聚合材料之研究”, 國立台北科技大學材料及資源工程學系碩士學位論文,2002。
114.陳志聰,”飛灰爐渣混凝土應用於港灣工程上之研究”,國立台灣海洋大學河海工程學系碩士學位論文,1989。
115.曾鈞生,”石油工業廢觸媒作為波索蘭材料之可行性研究”, 國立台灣師範大學化學工學系碩士學位論文,2002。
116.郭金祥,”優生混凝土抗蝕行為之研究”,國立台灣科技大學碩士論文,1996。
117.郭鶴松,”矽灰混凝土力學及物理性質之研究”,國立台灣海洋大學河海工程學系碩士學位論文,1991。
118.楊文貴,”無機配位化合物之立體化學成就影響因素及解題之個案研究”,國立台灣師範大學化學研究所碩士論文,台北,1999。
119.劉裕意,”添加卜作嵐材料對於混凝土耐久性影響之探討”,國立台灣海洋大學河海工程學系碩士學位論文,2001。
120.鄭偉宏,”高分子混凝土強度特性及耐久性之研究”,國立台灣海洋大學河海工程學系碩士學位論文,1993。
121.潘致遠,”添加矽灰及爐石對水泥薄漿工程性質之影響研究”,國立中央大學土木工程學系碩士學位論文,1999。
122.謝素蘭,”以高壓及高溫燒結技術鑄造水泥、粘土及飛灰混合料組件之研究”,國立台灣科技大學工程技術研究所碩士論文,1990。
123.顏垂慶,”添加波索蘭材料對混凝土氯離子擴散係數與電阻值之關係”,國立台灣海洋大學河海工程學系碩士學位論文,1998。
124.顏旭堯,”以不同試驗方法探討添加卜作嵐材料對混凝土微觀特性影響之研究”,國立海洋大學材料工程研究所論文,2000。




6-4 大陸文獻(按照作者姓名筆畫排列)
125.丁鑄,李宗津,吳科如,”含偏高嶺土水泥與高減水濟相容性研究”,建築技術學報,Vol.4,No.2,pp.105-109,2001。
126.袁鴻昌,江盞忠,”地聚合物材料的發展及其在我國的應用前景”,硫酸鹽通報,No.2,pp.46-51,1998。
127.代新祥,文梓芸,”土壤聚合反應的影響因素”,建築技術學報,Vol.5,No.3,pp.284-288,2002。
128.錢盞倩,詹樹林,李宗津,”摻偏高嶺土的高性能混凝土物理力學性能研究”,建築技術學報,Vol.4,No.1,pp.75-78,2001。
129.吳怡婷,施惠生,”製造土聚水泥中若干因素的影響”,水泥(CEMENT),No.3,pp.1-2,2003。
130.王洪分,沈盞冬,袁媛,”含C4A3S礦物硫酸鹽水泥力學性能及水化產物研究”,水泥(CEMENT),No.3,pp.3,2003。
131.丁鑄,張德成,丁杰”偏高嶺土對水泥性能的影響”混凝土與水泥製品(CHINA CONCRETE AND CEMENT PRODUCTS),No.5,pp.8-14,1997。
132.蔣林準,”賽高嶺土研究”,硫酸鹽通報,No.5,pp.51-54,2001。
133.代新祥,文梓芸,”土聚水泥的應用及其研究現況”,水泥(CEMENT),No10,pp.11-14,2001。
134.李凱琦,劉欽甫,許紅亮,”媒系高嶺岩及深加工技術”,中國建材工業出版社,2001。
















6-5 ASTM參考規範(按號次順序排列)
135.Compressive Strengh of Cylindrical Concrete Specimens【抗壓強度試驗】(ASTM C 39/C 39M-99)。
136.Air Content of Freshly Mixed Concrete by the Pressure Method【空氣含量試驗—壓力法】(ASTM C 231-97)。
137.Spitting Tensile Strength of Cylindrical Concrete Specimens【劈裂強度試驗】(ASTM C 496-96)。
138.Density,Absorption,and Void in Hardened Concrete【吸水率試驗】(ASTM C 642-97)。
139.Petrographic Examination of Hardened Concrete【中性化試驗】(ASTM C 856-95)。
140.Electrical Indication of Concrete`s Ability to Resist Chloride Ion Penetration【氯離子快速滲透試驗】(ASTM C 1202-97)。






6-6 CNS參考規範(按總號順序排列)
141.卜特蘭水泥(CNS61)
142.試驗篩(CNS386)
143.粗細粒料篩析法(CNS486)
144.細粒料比重及吸水率試驗法(CNS487)
145.粗粒料比重及吸水率試驗法(CNS488)
146.細粒料表面含水率試驗法(CNS489)
147.水硬性水泥凝結時間檢驗法---費開氏針法(CNS786)
148.混凝土坍度試驗法(CNS1176)
149.混凝土試體在試驗室模製及養護法(CNS1230)
150.工地混凝土試體之製作及養護法(CNS1231)
151.混凝土圓柱試體抗壓強度檢驗法(CNS1232)
152.混凝土粒料(CNS1240)
153.混凝土用飛灰及天然或鍜燒卜作嵐攙合物(CNS3036)
154.水硬性水泥及混凝土試驗用水槽濕養櫃及濕養室(CNS3037)
155.預拌混凝土(CNS3090)
156.混凝土圓柱試體分裂抗張強度試驗法(CNS3801)
157.新拌混凝土空氣含量試驗法----壓力法(CNS9661)
158.水泥細度篩析檢驗法(CNS10473)
159.卜特蘭水泥混凝土用飛灰及天然卜作嵐攙合物檢驗法(CNS10896)
160.混凝土圓柱試體模具(CNS10991)
161.混凝土圓柱試體模具檢驗法(CNS10992)
162.混凝土圓柱試體蓋平法(CNS11297)
163.混凝土配比設計準則(CNS12891)
164.篩分析試驗法(CNS13264)
165.混凝土拌合用水(CNS13961)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top