跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/14 03:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林敏清
研究生(外文):Min-Ching Lin
論文名稱:台灣西部回填土壤剪力波傳遞特性之研究
論文名稱(外文):Shear Wave Analysis for Western Taiwan Reclaimed Soil
指導教授:簡連貴簡連貴引用關係
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:310
中文關鍵詞:剪力波速雙土層彎曲元件走時曲線下孔法
外文關鍵詞:shear wave velocitydouble layerbender elementtime-path methoddown-hole method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:366
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究以台灣西部沿岸自然沉積土層與水力抽砂填築土層為研究重點,於試驗室以新興砂與C-109標準砂,進行Bender Element單、雙土層剪力波試驗,分析層狀土層波傳遞行為特性並建立評估模式。試驗方法以傳統單土層剪力波速研究為基礎,嘗試以新試驗參數相對密度比例RD、土層厚度比例RH,進行雙土層剪力波速試驗,以反應、分析現地層狀土層剪力波變化行為。再藉由現地震測試驗資料比較分析,與試驗研究成果,可提供未來水力抽砂回填土層工程設計參數選取及建議。分析重點包含不同試體高度、相對密度、乾密度、應力、試驗儀器、土壤顆粒形狀、飽和度、試體製作方法、迴歸方法、評估模式、雙土層效應、現地震測試驗比較與土層分析等探討。
研究顯示;剪力波速以線性與Gibson soil指數迴歸分析,現地存在不受應力影響之「地表剪力波速」與剪力波速隨土層應力增加而增加,於地層深處因土壤岩化產生「極限剪力波速」之現象,符合「岩石循環」之觀念。利用「走時曲線」分析雙土層剪力波速傳遞行為,提出雙土層效應係數 ,分析顯示剪力波速於較深之土層放大效應現象較為明顯。
評估模式分析方面;研究建立簡易單土層剪力波速評估模式,利用地表相對密度,即可推求各土層深度之剪力波速。而層狀土層分析方法由淺至深,以地表剪力波速、雙土層效應及岩石循環等觀念,結合單、雙土層試驗結果分析,重新設計各階段應力之代表密度,依土層厚度比例 =1:1分成三個土層、五個代表剪力波速值,建立現地層狀土層剪力波速評估模式。此評估方法;能強化試驗室模擬現地土壤相對密度分佈變化範圍,並重新賦予單、雙土層試驗數據使用意義與真正價值。
現地水力抽砂回填土層顆粒排列鬆散,標準貫入試驗SPT-N值小於10、剪力波速 小於150 m/s,相對密度 介於20% ~ 40%。地表與回填深度7m範圍內,因土壤應力較低,細粒料土壤對剪力波速尚未產生影響,且無土層分佈因素,現地與試驗室分析數據較為接近。隨深度愈深;土壤顆粒排列緊密,現地細料填充土壤孔隙增加緊密程度而使剪力波速增加,故隨深度增加試驗室與現地剪力波速差異性愈大。
In this study, the key points are both sedimentation soil and hydraulic filled reclaimed soil in western coast of Taiwan. By using Hsin-Hsin sand and C-190 sand to perform the shear wave velocity test with traditional single and double layer in the lab, then analyze the characteristic in order to build the pattern of evaluation. This test which was based on a traditional single layer shear wave velocity by using new parameter, relative density ratio RD and soil layer depth ratio RH , to analyze the result of the variety of site-layer shear wave velocity, and further, by using the data from Down-Hole method to offer some suggestions. Including relative density, dry unit weight, Stress, test instrument, soil shape, saturation degree (B), regression, evaluation-mode, the effect of double-decked layer, Down-Hole method and soil-layer analysis.
This study has shown that by using linear and the Gibson soil to analyze the shear wave velocity, the ground on-site shear wave velocity and the shear wave velocity would greater by increasing soil-layer stress and they would cause “limit shear wave velocity” which was conform to the concept of rock-cycle. Using time-path method to analyze phenomenon of the shear wave velocity in double layer, the effect coefficient , and its enlarge effect was more obvious in the deeper layer.
The evaluation-mode of this study which was set up an simple single layer evaluation-mode, by using the ground relative density to inquire the shear wave velocities from different soil-layer depths, which utilized the ground shear wave velocity ,double-layer effect and rock-cycle concept to combine with single and double soil-layer tests then redesign these densities of the stresses, =1:1 which divided into three layers ,five shear wave velocities to set up on-site evaluation-mode. By using this method to strengthen its scope in the lab and renew the single and double layer test data.
In-site reclaimed soil is soft and weak, the SPT-N value is smaller than 10, the shear wave velocity is smaller than 150 m/s, the relative density : 20% ~ 40% .the ground and reclaimed soil depth which is around 7m, because of its lower stress, the shear wave velocity would not affect on the particle soil and its on-side data are close to the lab. In-site reclaimed soil, its increasing density would cause of the higher shear wave velocity by increasing depth, therefore, the discrepancy would be greater between the lab and on-site shear wave velocity by increasing depth.
內 容 頁
中文摘要 I
英文摘要 III
總目錄 IV
表目錄 VIII
圖目錄 X
符號說明 XVII

第一章 緒論
1.1 研究背景 1
1.2 研究目的 4
1.3 研究流程架構 6
1.4 論文章節內容 7
第二章 文獻回顧
2.1 剪力波研究歷程 9
2.2 剪力波相關定義說明 28
2.2.1 波形定義 28
2.2.2 應力定義 30
2.2.3 剪應變範圍說明 31
2.3 剪力波量測技術 33
2.3.1 試驗室量測剪力波速之方法 33
2.3.2 現地量測剪力波速之方法 39
2.4 土壤剪力波速影響因素 42
2.5 剪力波速應用研究 46
2.5.1 剪力波速與SPT-N值之關係 46
2.5.2 剪力波速與抗液化強度之關係 46
2.5.3 動態參數與地盤周期 47
2.6 回填土壤相關研究 48
2.6.1 台灣西部海岸開發現況分析 48
2.6.2 填海造地高程 50
2.6.3 水力抽砂回填土壤工程特性 51
2.6.4 水力抽砂回填相關之研究 52
第三章 研究計畫
3.1 現地條件分析 57
3.1.1 雲林離島填海造地土層資料分析 58
3.1.2 水力抽砂回填土層 60
3.2 試驗室模擬條件分析 68
3.3 剪力波速試驗計畫 71
3.3.1 試驗設計條件說明 71
3.2.2 研究問題重點與試驗項目 73
第四章 試驗儀器與砂樣分析
4.1 剪力波速量測設備 75
4.1.1 壓電陶瓷晶片 75
4.1.2 示波器 77
4.1.3 函數產生器 79
4.1.4 資料擷取系統 80
4.1.5 激發波形與頻率選取之影響 80
4.1.6 波形到達時間之判定 80
4.2 三軸設備 85
4.2.1 供壓系統 85
4.2.2 量測系統 88
4.2.3 資料擷取系統 89
4.3 儀器校正 91
4.3.1 線性可變差動變壓器校正 91
4.3.2 體積變化儀校正 91
4.3.3 訊號調節放大器校正 92
4.3.4 荷重計(Load Cell)之校正 92
4.4 自行組裝試驗儀器功能介紹 93
4.4.1 試驗功能 93
4.4.2 超作介面 93
4.5 砂樣分析 94
4.5.1 試驗砂樣種類及特性 94
4.5.2 砂樣配置 95
4.5.3 濕搗法試驗步驟 97
4.5.4 霣降法試驗步驟 99
第五章 單土層剪力波速試驗結果分析
5.1 剪力波速量測數據影響因子分析 104
5.1.1 測量誤差因子說明 104
5.1.2 正確剪力波速值判斷 117
5.1.3 不同剪力波速試驗儀器測量比較 133
5.2 試驗設計條件對剪力波速影響分析 136
5.2.1 試體高度 136
5.2.2 飽和度B值 137
5.2.3 乾密度與相對密度 138
5.2.4 試體製作 143
5.3 單土層剪力波速評估模式分析 146
5.3.1 土壤剪力波速傳遞介質分析 146
5.3.2 試驗室單土層剪力波速評估方法 146
5.4 應力、土壤密度、岩石循環與剪力波速 161
第六章 雙土層剪力波速試驗結果分析
6.1 雙土層試驗條件分析 167
6.1.1 雙土層試驗設計 167
6.1.2 雙土層試體製作影響因素分析 169
6.2 雙土層試驗結果分析 173
6.3 雙土層剪力波速評估模式分析 177
6.3.1 雙土層分析原理 177
6.3.2 雙土層走時曲線 183
6.3.3 雙土層效應 205
6.3.4 層狀土層評估模式 208
第七章 剪力波速評估綜合分析
7.1 麥寮區現地震測試驗資料分析 219
7.1.1 現地土壤基本資料分析 219
7.1.2 現地試驗與剪力波速迴歸分析 224
7.2 試驗室與現地剪力波速評估模式比較分析 228
7.2.1 試驗設計條件分析比較 228
7.2.2 剪力波速評估模式比較 232
7.2.3 地表與極限剪力波速討論 235
7.3 案例說明與使用建議 239
第八章 結論與建議
8.1 結論 243
8.2 建議 252
參考文獻 253
附錄一:Bender Element剪力波試驗數據 259
附錄二:剪力波試驗時間紀錄圖 271
B. O. Hardin, and F. E. Richart, Jr., Fellow. , “Elastic Wave Velocities in Granular Soils”, Journal of the Soil Mechanics and Foundations Division Proceeding of the American Society of Civil Engineers,pp.27-42(1963)
K.H. Stokoe and Richard D. Woods, “In Situ Shear Wave Velocity by Cross-hole Method”, Journal of the Soil Mechanics and Foundations Division Proceeding of the American Society of Civil Engineers, May,pp33-65 (1972).
Robert F. Ballard, JR., “Method For Crosshole Seismic Testing”, Journal of the Geotechnical Engineering Division”, December, pp.(1976).
Bruce Auld, “Cross-hole and Down-hole Vs by Mechanical Impulse”, Journal of the Geotechnical Engineering Division, December, (1977).
Stephenson, R.w., “Ultrasonic Testing for Determining Dynamic Soil Moduli,” Dynamic Geotechnical Testing, ASTM STP 654, pp.179-195 (1978).
Yutaka Ohta and Noritoshi Goto, “Empirical Shear Wave Velocity Equations in Terms of Characteristic Soil Indexes”, Earthquake Engineering and Structural Dynamic, Vol.6, pp.167-187, (1978).
Stephan K. Roesler, “Anisotropic Shear Modulus Due to Stress Anisotropy”, Journal of the Geotechnical Engineering Division, ASCE, Vol.105, No.GT7, pp.871-880(1979).
Larkin,T.J.,and Taylor,P.W.“Comparsiom of Down-Hole and Laboratory Shear Wave Velocities , ”Canadian Geotechnical Journal 16(I) , pp152-162 (1979).
Peiji Yu and F. E. Richart, Jr., F. ASCE, “Stress Ratio Effects on Shear Modulus of Dry Sands”, Journal of Geotechnical Engineering, Vol. 110, No. 3, March, (1984).
Robertson , P.K., and Campanella , R.G., “ Seismic CPT to Measure In-Situ Shear Wave Velocity,”Journal of Geotechnical Enginnering , Vol. 112 , No.8 , pp791-803(1986).
A. Souto, J. Hartikainen and K. ÖZÜDOGRU, “Measurement of Dynamic Parameters of Road Pavement Materials by the Bender Element and Resonant Column Tests”, Geotechnique 44, No. 3, 519-526, (1994).
P. K. Robertson, S. Sasitharan, J. C. Cunning, and D. C. Sego, “Shear-wave Velocity to Evaluate In-Situ State of Ottawa Sand”, Journal of Geotechnical Engineering, Vol. 121, No. 3, March, (1995).
Viggiani ,G and Atkinson , J.H., “Interpretation of bender element tests, ” Geotechnique Vol. 45, No.1, pp.149-154(1995).
Roy H. Borden, Lisheng Shao, ASCE, and Ayushman Gupta, “Dynamic Properties of Piedmont Residual Soils”, Journal of Geotechnical Engineering, Vol. 122, No. 10, October, (1996)
Enrico G. M. Brignoli, Marino Gotti, and Kenneth H. Stokoe, II, “Measurement of Shear Waves in Laboratory Specimens by Means of Piezoelectric Transducers”, Geotechnical Testing Journal, GTJODJ, Vol. 19, No. 4, pp.384-397, (1996).
V. JOVICIC, M. R. Coop and M. SIMIS, “Objective Criteria for Determining Gmax from Bender Element Tests”, Geotechnique Vol.46, No. 2, pp.357-362, (1996)
Enrico G. M. Brignoli, Marino Gotti, and Kenneth H. Stokoe, II, “Measurement of Shear Waves in Laboratory Specimens by Means of Piezoelectric Transducers”, Geotechnical Testing Journal, GTJODJ, Vol. 19, No. 4, pp.384-397, December, (1996)
Shahariar Baig, M. Picornell, and S. Nazarian, “Low Strain Shear Moduli of Cemented Sands”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 123, No. 6, (1997)
Ross W. Boulanger, Lelio H. Mejia, and Izzat M. Idriss, “Liquefaction at Moss Landing during Loma Prieta Earthquake”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 123, No. 5, May, (1997)
R. Salgado, V. P. Drnevich, Fellow, A. Ashmawy, W. P. Grant and P. Vallenas, “Interpretation of Large-strain Seismic Cross-hole Tests”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 123, No. 4, April, (1997)
V. Jovicic and M. R. Coop, “The Measurement of Stiffness Anisotropy in Clays with Bender Element Tests in the Triaxial Apparatus”, Geotechnical Testing Journal, GTJODJ, Vol. 21, No. 1, 3-10, March, (1998).
Rajendram Arulnathan, Ross W. Boulanger, and Michael F. Riemer, “Analysis of Bender Element Tests”, Geotechnical Testing Journal, GTJODJ, Vol. 21, No. 2, 120-131, June, (1998).
Xiangwu Zeng and Bixian Ni, “Application of Bender Element in Measuring Gmax of Sand Under K0 Condition”, Geotechnical Testing Journal, GTJODJ, Vol.21, No.3, pp.251-263, September, (1998).
V. Fioravante. M. Jamiolkowski, D. C. F. Lo Presti, G. Manfredini and S. Pedroni, “Assessment of the Coefficient of the Earth Pressure at Rest from Shear Wave Velocity Measurements”, Geotechnique 48, No. 5, pp.657-666, (1998).
R. Salgado, P. Bandini, and A. Karim, “Shear Strength and Stiffness of Silty Sand”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 126, No. 5, May, (2000).
Derek S. Pennington, David F. T. Nash, and Martin L. Lings, “Horizontally Mounted Bender Elements for Measuring Anisotropic Shear Moduli in Triaxial Clay Specimens”, Geotechnical Testing Journal, GTJODJ, Vol. 24, No. 2, pp.133-144, June, (2001).
Vincenzo Fioravante and Roberto Capoferri, “On the Use of Multi-directional Piezoeletric Transducers in Triaxial Testing”, Geotechnical Testing Journal, GTJODJ, Vol. 24, No. 3, 243-255, September, (2001).
鄭淵中,「含水土壤傳遞波速之量測與模擬初探」,淡江大學土木工程研究所,碩士論文,台北(1996)。
許慶良,「土壤應力波試驗於不排水土樣檢測之應用研究」,淡江大學土木工程研究所,碩士論文,台北(1997)。
林敏清,「回填造地土壤剪力波波速與相關工程參數關係之研究」,海洋大學大學何海工程研究所,碩士論文,基隆(1997)。
陳瑞禾,「現地試驗評估粘土初始剪力模數之初步研究」,台灣大學土木工程研究所,碩士論文,台北(1997)。
黃香燕,「利用壓電晶片量測不同應力條件下之砂土傳波速度」,中央大學土木工程研究所,碩士論文,桃園(1997)。
許修維,「三軸應力波試驗與理論波速模式之關係研究」,淡江大學土木工程研究所,碩士論文,台北(1997)。
卓彥百,「層狀土壤對剪力波傳遞特性影響之評估」,海洋大學大學何海工程研究所,碩士論文,基隆(1999)。
杜明璁,「等向受壓飽和土壤之三軸應力波試驗」,淡江大學土木工程研究所,碩士論文,台北(2000)。
邱建銘,「以剪力波速評估員林地區液化及其地層動態反應研究」,台灣大學土木工程研究所,碩士論文,台北(2001)。
謝祥暉,「回填土壤剪力波特性與抗液化強度相關性之研究」,海洋大學大學河海工程研究所,碩士論文,基隆(2001)。
林靜怡,「細粒料對粉土細砂小應變勁度之影響」,交通大學土木工程研究所,碩士論文,新竹(2003)。
謝宗佑,「細料填充孔隙對回填土壤剪力波速與阻尼比影響之研究」,海洋大學大學河海工程研究所,碩士論文,基隆(2003)。
Steven L. Kramer, “Geotechnical Earthquake Engineering”
吳偉特,“土壤動力特性於大地工程之應用”,地工技術雜誌第二期, pp.82-96(1983).
Shirley,D.J. and Hampton, L.D., “Shear-Wave Measuremants in Laboratory Sediments,“ Journal of the Acoustical Society of America , 63(2) Feb., pp.607-613.(1978).
Horn,I.W.,“Some Laboratory experiments on Shear-Wave Propagation in Unconsolidated Sands,”Marine Geotechnology Vol.4,31-54(1980).
Schwarz, S.D. and Musser,J., “Various Techniques for Making In-Situ Shear-Wave Velocity Measurements : A Description and Evaluation,” Proceedings , Microzonation Conference, Seattle, WA, Vol.2, pp.593(1972).
Beeston,H.E. and McEvilly,T.V.,“Shear WaveVelocities from Down-Hole Measurements,”Journal of the Internation Association for Earthquake Engineering,5(2),pp181-190(1977).
Stokoe,K.H. and Woods.R.D.,“In-Situ Shear Wave Velocity by Cross-Hole Method,”Journal of the Soil Mechanics and Foundations Division,ASCE 98 (SM5),pp443-460(1972).
Nishio,S.,and Katsura,Y.,“Shear Wave Anisotropy in Edogawa Pleistocene Deposit,”Pre-failure Deformation of Geomaterials“,pp169-174(1994).
Kuribayashi, E.,Iwasaki,T.,Tatsuoka,E.,“Effects of Stress-Strain Condition on Dynamic Properties of Sand, ”Proceedings of Japanese Society of Civil Engineers,No.242,pp105-114(1976).
Robertson, P.K., Woeller,D.J.,and Finn,W.D.L.,“Seismic Cone Penetration Test for Evaluating Liquefaction Potential under Cyclic Loading,” Can. Geotech. Journal,No.29,pp686-695(1992).
Casagrande, A. and Carrillo, N., “Shear Faillur of Anisotropic Material, ” Vol.31, pp.74-87(1994).
Parkin, A.K., Gerrard, C.M. and Willoughby, D.R., “Disscussion on Deformation of Sand Sear ,” Journal of Civil Engineering, Vol.31, pp.74-87.(1968).
Arthur, J.R.F., and Menzies, B.K., “Inherent Anisotropy in a Sand, ”Geotechnique, Vol.22, No.1, pp.115-128.(1972).
Mulilis, J.P. et al, “The Effect of Method of Sample Preperation on the Cyclic Stress-Strain Behavior of Sand, ”Report No.EERC 75-18, U.C.Berkeley, Earthquake Engineering Research Center , July.(1975).
簡連貴,“台灣西部抽砂回填土壤力學行為之研究”,(1993)
趙基盛,陳福勝,“標準貫入試驗在基礎設計之應用”,地工技術雜誌第三期,pp.63-67(1983).
Tonouchi, K, Sakayama, T. and Imai, T., “S Wave Velocity In The Ground And The Damping Factor, ” Bull. Int. Assoc. Eng. Geologists, 26-27pp. 327-333.(1983).

Fumal, T. E. and Tinsley, J C., Mapping shear wave velocities of near-surface geological materials. In J. I. Ziony (Editor), Predicting Areal Limits of Earthquake Induced Landsliding; In Evaluation of Earthquake Hazards in the Los Angeles Region – An Earth Science Perspective. US Geol. Surv. paper 1360, pp. 127-150.(1985).
道路橋示方書,V耐震設計篇,日本(1990)。
Kamil Kayabali, “Soil Liquefaction Evaluation Using Shear Wave Velocity, ” Engineering Geology ,pp121-127.(1996).
吳志明,「下井探測法量測剪力波速之影響因素探討」,國立台灣工業技術學院營建工程技術研究所,碩士論文,台北(1990)。
簡連貴,林敏清,“回填造地土壤剪力波速之評估”,地工技術雜誌第67期,pp.69-82.(1998)。
港灣結構物設計基準研究-碼頭設計基準研定及說明草案,交通部運輸研究所,(1995).
Kohji Tokimatsu and Akihiko Uchida, “Correlation Between Liquefaction Resistance and Shear Wave Velocity, ”Soils and Foundations,Japan,Vol. 30, No.2,pp33-42.(1990).
陳正興、陳立言,“雙層土受水平剪力波作用之振動反應”,中國土木水利工程學刊第七卷第三期,第263-271頁(1995)。
張希舜、張凱博,“土層非線性基本振動週期之探討”,中國土木水利工程學刊第十四卷第二期,第207-217頁(2002)。
非都市土地開發審議作業規範,營建雜誌社(2001)。
Schiffman, L. et al, “Behavior and Properties of Hydraulic Fulls,” Hydraulic Fill Structure, pp.166-202.(1990).
Sladen, J.A. and Hewitt, K.J., “Influence of Placement Method on the In-site Density of Hydraulic Sand Fills,” Candian Geotech. J.26, pp.453-466.(1989).
梁曉光,“濱海抽砂造地工程”,中興工程第四十二期,pp.45-62(1994)。
蔡宗宏,「台灣西部近岸抽砂回填土壤液化潛能之研究」,海洋大學大學河海工程研究所,碩士論文,基隆(1993)。
張上君,「非等向壓密回填土壤在低應變下剪力模數與阻尼比之研究」,海洋大學大學河海工程研究所,碩士論文,基隆(1996)。
Peiji Yu and Richart,F.E.,“Stress Ratio Effects on Shear Modulus of Dry Sands, ” Journal of Geotechnical Engineering , Vol. 110 , No.3 , pp331-345 (1984).
陳堯中,賴穎芳,“非均向壓密下砂土之最大剪力模數與液化阻抗之關係”,中國土木水利工程學刊第七卷,第二期,pp.143-150(1995)。
“雲林縣離島式基礎工業區開發計畫整體規劃通盤檢討及綱要計畫擬定”,中興工程顧問社,(1993)
黃安斌,張嘉偉,何應璋,葉嘉鎮,“雲林麥寮粉土細砂之工程性質”,地工技術雜誌第67期,pp.55-68.(1998)。
Discussion“Interpretation of Bender Element, ”Geotechnique,Vol.47, No.4, pp.873-877. (1997).
陳斗生,俞清瀚,葉嘉鎮,“海埔新生地的大地工程問題之探討-以六輕基地為例(上篇),”地工技術雜誌第57期,pp.91-106. (1996)。
Barja M. Das, "Principles of Soil Dynamic," Chapter 4,pp87-180(1993).
岡本舜三,地震工程學,科技圖書股份有限公司。(1995)
Richard E. Goodman, Introduction to Rock Mechanics.(1989)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top