(54.225.57.230) 您好!臺灣時間:2018/08/19 00:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:龍湘美
研究生(外文):Hsiang-Mei Lung
論文名稱:乳酸菌細菌素抗菌作用及其在食品上應用之回顧
論文名稱(外文):Antimicrobial Activity of Lactic Acid Bacteria Bacteriocins and Its Application in Foods – A Review
指導教授:潘崇良
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:222
中文關鍵詞:細菌素乳酸菌
外文關鍵詞:bacteriocinlactic acid bacteria
相關次數:
  • 被引用被引用:18
  • 點閱點閱:4949
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:478
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
自然界中包括動、植物、昆蟲、及細菌等,均可以產生天然的抗菌蛋白質 (胜肽),其主要作用為人體、動物疾病、植物疾病或是食品病菌之抗菌劑。由細菌所生產的抗菌蛋白質 (胜肽) 通稱為細菌素 (bacteriocin)。革蘭氏陽性菌及革蘭氏陰性菌均可生產各類細菌素,由乳酸菌所生產的細菌素依分子量大小可分為 class I (< 5 kDa)、class II (< 10 kDa)、及 class III (> 30 kDa)。其中對熱具安定性的乳酸菌細菌素可被區分為 (1) 胺基酸經轉譯後修飾者歸類在 class I 中,稱為 lantibiotic,包括 nisin 和 lacticin 等;(2) 胺基酸未經轉譯後修飾者被歸類在 class II 的 non-lantibiotics,包括 carnobacteriocin、enterocin、pediocin、及 sakacin 等。歸類在 class III 的乳酸菌細菌素,為對熱具敏感的大分子胜肽。無法以上述原則歸類者,屬於非典型 (atypical) 細菌素,如 bifidocin、leucocin B-TA33a、及 mesenterocin 52B 等。主要生產細菌素的乳酸菌有 Carnobacterium、Enterococcus、Lactobacillus、Lactococcus、Pediococcus、及 Streptococcus 等。乳酸菌細菌素主要抑制對象為革蘭氏陽性細菌,可抑制的菌種包括污染性的乳酸菌以及 Listeria、Bacillus、Clostridium 及 Sta. aureus 等食品病原菌營養細胞的生長及產孢菌孢子的萌發,故能廣泛應用在發酵或非發酵的乳品、肉品、魚製品、醃漬食品及穀類等食品系統上。屬於 class IIa 的 pediocin 家族則是由於其胺基酸排列的特性,對於 Listeria的菌株有特別強的抗菌作用。但這些乳酸菌細菌素單獨使用時對於革蘭氏陰性菌無抗菌的作用。添加化學防腐劑延長食品儲存期限已無法被現代的消費者接受,因此天然以及輕加工的食品現已普遍被重視,故自然產生的乳酸菌細菌素可以被大量生產和應用在食品中。乳酸菌細菌素的應用方式如做為發酵食品中生產細菌素的菌酛、直接添加純化的細菌素在食品製程中、或是附加在包覆材料上抑制食品表面的細菌等來做為食品防腐及品質改良的重要角色。雖然許多乳酸菌細菌素是從食品的乳酸菌中所分離和產生,但並非在所有的食品系統中均能展現有效的抗菌作用,因為在實際的應用上會因食品的物理和化學特性、環境條件、使用濃度、或作用時間等因素而影響該細菌素的活性;而且當這些細菌素所使用的濃度不足或作用時間不夠長時,會使目標菌產生抗性,例如 L. monocytogenes Scott A (ATCC 700302) 已經被確認會對 nisin 產生抗性 (nisin-resistance, Nisr)。為確保及加強這些乳酸菌細菌素的抗菌效果,以乳酸菌細菌素為基礎的多重防腐系統 (multiple–hurdle preservation system),或是應用欄柵技術 (hurdle technology) 合併使用其他物理或化學防腐方法,提高對於食品病原菌的抗菌效果是必要的。這些防腐技術包括了添加螯合劑、使用溶菌素、提高鹽濃度、加入乳化劑、以及物理性的防腐 (如高靜水壓、溫度控制、調氣包裝、調整食品環境的 pH 值、加熱及低溫儲存等),此外細菌素之間的合併使用,也可以對革蘭氏陰性菌如 E. coli、Salmonella、以及 Pseudomonas 等產生抗菌的能力。
Abstract
Natural antimicrobial proteins (peptides) are produced by animals, plants, insects, and bacteria in nature. These natural peptides could be used as antimicrobial agents in human’s, animal’s, or plant’s diseases or on food pathogens. Antimicrobial proteins (peptide) produced by bacterium are called bacteriocin. Bacterioicn can be produced by Gram positive and Gram negitive bacteria. The bacteriocins produced by lactic acid bacteria are divided into class I (< 5 kDa), class II (< 10 kDa), and class III (> 30 kDa) according to their molecular weight. Heat-stable LAB bacteriocins whose amino acids are through post-translational modification are classified into class I, called lantibiotic, including nisin and lacticin. As to the LAB bacteriocins that their amino acids are not through post-translational modification are classified into class II, called non-lantibiotics, including carnobacteriocin, enterocin, pediocin, and sakacin. Class III are heat-labile peptides of large molecule weight. Atypical bacteriocins, which can not be classified by those princrples, such as bifidocin, leucocins B-TA33a, and mesenterocin 52B. LAB bacteriocins are majorly produced by Carnobacterium, Enterococcus, Lactobacillus, Lactococcus, Pediococcus, and Streptococcus. The most inhibition spectra of LAB bacteriocins are restricted Gram-positive bacteria, in which are contaminated LAB, Listeria, Bacillus, Clostridium, and Sta. aureus. Mostly of the inhibition exhibited on the growth of vegetative cells and the germination of endospores. Therefore, LAB bacteriocins could be utilized on the food systems of dairy product, meat, fishery product, pickled product, and cereal product, whether it was fermented or not. The pediocin familiy, which were classified as class IIa, showed more stronger antimicrobial effect on Listeria than other bacterial genera, that may be due to their specific amino acid sequences. Mostly, LAB bacteriocins did not present antimicrobial effect on Gram negetive bacteria while used alone. In order to prolong food shelf life, the chemical preservative were used traditionally by the producer, but foods preserved by this way such will not be accepted by modern consumers. The naturally and minimally processed foods are become more popular than before. The also naturally produced LAB bacteriocins were bulkly produced by LAB and being applied in varieus foods. The important way that LAB bacteriocins applied including: (A) the starter can produced bacteriocins by itself; (B) the purified bacteriocins were added during food manufacture; (C) or the bacteriocins are coating on the wrapping material and being released after food packaging to acehieve food preservation and quality improvement. Although many LAB bacteriocins derived from different sources of food, but the antimicrobial effect could not be monitored among the different food systems by these LAB foods. This could be dued to the antimicrobial effect of LAB bacteriocins as used in real food systems are influenced by its the physical and chemical properties, environmental conditions, concerntrations used, and duration of treatment. As the concerntration of LAB bacteriocins or the time of treating is not enough high or long, the target bacteria could develop the resistance to the bactericin used. For example, L. monocytogenes Scott A (ATCC 700302) has been identified to be resistant to nisin (Nisr). To assure and enhance the antimicrobial effect of LAB bacteriocins, LAB bacteriocins should be employed as the foundation of the multiple–hurdle technology preservation system or to be used in the hurdle as combined with other physical and chemical agents. These measures should improve the antimicrobial effect of LAB bacteriocins on the common foodborne pathogens. Such preserving technology includes adding chelating agent, emplying lysozyme, increasing salt concentration, using emulsifier, and other physical technology as hydrostatic pressure, controlled temperature, modified atmosphere packaging, adjusted pH value of the food environment, heating, and cooling treatment. In addition, the combination different LAB bacteriocins also could inhibit the Gram-negative bacteria such as E. coli, Salmonalla, and Pseudomonas.
目 錄
目錄 ………………………………………………………………… i
表目錄 ……………………………………………………………… v
圖目錄 ……………………………………………………………… vi
附錄 ………………………………………………………………… vii
名詞縮寫 …………………………………………………………… viii
中文摘要 …………………………………………………………… x
英文摘要 …………………………………………………………… xii
Ⅰ、前言 …………………………………………………………… 1
Ⅱ、乳酸菌分類 …………………………………………………… 3
(Ⅰ) 雙歧桿菌屬 (Bifidobacterium) ………………………… 4
(Ⅱ) 肉品桿菌屬 (Carnobacterium) ………………………… 4
(Ⅲ) 腸球菌屬 (Enterococcus) ………………………………… 5
(Ⅳ) 乳酸桿菌屬 (Lactobacillus) …………………………… 5
(Ⅴ) 乳酸球菌屬 (Lactococcus) ……………………………… 7
(Ⅵ) 明串球菌屬 (Leuconostocs) …………………………… 7
(Ⅶ) 酒球菌屬 (Oenococcus) ………………………………… 8
(Ⅷ) 小球菌屬 (Pediococcus) ………………………………… 8
(Ⅸ) 有孢子乳桿菌屬 (Sporolactobacillus) ………………… 9
(Ⅹ) 鏈球菌屬 (Streptococcus) ……………………………… 9
(ⅩⅠ) 四體球菌屬 (Tetragenococcus) ………………………… 9
(ⅩⅡ) 徘徊球菌屬 (Vagococcus) ……………………………… 10
(ⅩⅢ) Weissella ………………………………………………… 10
(ⅩⅣ) 其他 ……………………………………………………… 11
Ⅲ、乳酸菌一般特性及抗菌作用 ………………………………… 13
(Ⅰ) 一般特性 ………………………………………………… 13
(Ⅱ) 抗菌物質種類……………………………………………… 15
1. pH 值及有機酸 ……………………………………… 15
2. 過氧化氫 (H2O2) ……………………………………… 16
3. 二氧化碳 (CO2) ……………………………………… 17
4. 細菌素 ………………………………………………… 17
5. 洛德因系統 (reuterin system) ………………………… 18
6. 雙乙醯 (diacetyl) ……………………………………… 18
Ⅳ、細菌素 (抗菌胜肽) 種類與特性 …………………………… 20
(Ⅰ) 一般特性 ………………………………………………… 21
(Ⅱ) 分類 ……………………………………………………… 21
1. Class I …………………………………………………… 22
2. Class II ………………………………………………… 22
3. Class III ………………………………………………… 23
Ⅴ、乳酸菌細菌素特性、分類與作用機制 ………………………… 24
(Ⅰ) 一般特性與分類 ………………………………………… 24
(Ⅱ) 乳酸菌細菌素分類、作用機制與種類 …………………… 26
1. Class I (lantibiotic) ……………………………………… 27
(1) 一般特性 …………………………………………… 27
(2) 分類與抗菌機制 …………………………………… 28
A. 分類 ……………………………………………… 28
B. 抗菌機制 ………………………………………… 29
(3) 種類 ………………………………………………… 30
A. Nisin ……………………………………………… 30
B. Lacticin 3147 ……………………………………… 31
C. Lacticin 481 ……………………………………… 32
D. Lactocin S ………………………………………… 32
E. Mutacin …………………………………………… 32
F. 其他 class I 乳酸菌細菌素 ……………………… 33
2. Class II (non-lantibiotic) ……………………………… 33
(1) 一般特性 …………………………………………… 34
A. Class IIa …………………………………………… 36
B. Class IIb …………………………………………… 36
C. Class IIc …………………………………………… 36
(2) 抗菌機制 …………………………………………… 37
(3) 種類 ………………………………………………… 37
A. Class IIa …………………………………………… 37
(A) Pediocin ……………………………………… 37
(B) Carnobacteriocin ……………………………… 39
(C) Divercin ……………………………………… 39
(D) Enterocin ……………………………………… 40
(E) Sakacin ………………………………………… 41
(F) 其他 class IIa 乳酸菌細菌素 ……………… 42
B. Class IIb …………………………………………… 43
3. Class III 乳酸菌細菌素 ……………………………… 44
4. 非典型 (atypical) 乳酸菌細菌素 …………………… 44
(Ⅲ) 乳酸菌細菌素抗菌目標 …………………………………… 45
1. 對革蘭氏陰性菌與革蘭氏陽性菌細胞之影響 ……… 45
2. 對產孢細菌細胞之影響 ……………………………… 45
(Ⅳ) 乳酸菌細菌素抗菌試驗與抗菌範圍 …………………… 46
1. 乳酸菌細菌素和其他因子抗菌效果 ………………… 46
2. 乳酸菌細菌素抗菌範圍 ……………………………… 52
(Ⅴ) 抗乳酸菌細菌素菌株產生之機制及影響 ……………… 52
1. Nisr 抗菌機制 ………………………………………… 53
2. 結合其他抗菌因子對Nisr細菌之影響 ……………… 55
Ⅵ、乳酸菌細菌素在食品上之應用 ……………………………… 59
(Ⅰ) 生產乳酸菌細菌素菌株之分離來源 ……………………… 59
1. 發酵食品來源 ………………………………………… 60
(1) 乾酪製品 …………………………………………… 60
(2) 魚、肉類製品 ……………………………………… 62
(3) 蔬果製品 …………………………………………… 63
(4) 穀類及其他製品 …………………………………… 63
2. 非發酵食品來源 ……………………………………… 64
(1) 乳製品、魚、肉製品 ……………………………… 64
(2) 蔬果類製品 ………………………………………… 64
(3) 飲料與酒 …………………………………………… 65
(4) 穀類及其他非食品來源 …………………………… 65
(Ⅱ) 乳酸菌細菌素在食品上之應用 …………………………… 66
1. 發酵食品 ……………………………………………… 68
(1) 乾酪製品 …………………………………………… 68
(2) 肉製品與海鮮 ……………………………………… 72
(3) 蔬菜製品 …………………………………………… 74
(4) 飲料與酒類 ………………………………………… 75
(5) 穀類製品 …………………………………………… 76
2. 非發酵食品 …………………………………………… 76
(1) 乳製品 ……………………………………………… 76
(2) 肉製品 ……………………………………………… 77
(3) 魚及海鮮製品 ……………………………………… 83
(4) 蔬菜、水果及沙拉 ………………………………… 85
(5) 飲料與酒類 ………………………………………… 85
(6) 豆及穀類製品 ……………………………………… 86
(7) 包裝材料 …………………………………………… 87
(8) 其他用途 …………………………………………… 89
Ⅵ、乳酸菌細菌素應用於食品產業上的未來展望 ……………… 90
Ⅶ、參考文獻 ……………………………………………………… 91












表 目 錄
表一、革蘭氏陽性菌細菌素分類 …………………………………… 139
表二、乳酸菌細菌素生產菌株及胺基酸相關特性 ………………… 141
表三、乳酸菌細菌素濃度和其他因子之抗菌效果 ………………… 147
表四、乳酸菌細菌素之抗菌範圍 …………………………………… 152
表五、不同來源之乳酸菌細菌素生產菌株 ………………………… 158
表六、乳酸菌細菌素做為食品防腐之應用 ………………………… 162
表七、使用乳酸菌細菌素做為食品欄柵技術中部分增加抗菌活性 的因子 ……………………………………………………… 166
表八、乳酸菌細菌素在不同食品系統之防腐應用 ………………… 172



圖 目 錄
圖一、數種乳酸菌 lantibiotics 初級結構 ………………………… 181
圖二、數種非乳酸菌 lantibiotics 初級結構 ……………………… 182
圖三、Nisin 誘使形成類似楔子孔洞之模型 ……………………… 183
圖四、Class I 及 class IIa 細菌素胺基酸 N 端序列 …………… 184
圖五、圖解 Class IIa 細菌素的結構模式與目標細胞膜預期反應的位置 ……………………………………………………… 185
圖六、圖解革蘭氏陽性菌與革蘭氏陰性菌細胞壁之比較 ………… 186
圖七、某些食品防腐劑對孢子膨脹、出芽或成長的影響 ………… 187
圖八、電子顯微鏡下 enterocin CRL35 對 L. monocytogenes 細胞的影響 ………………………………………………… 188
圖九、掃描式電子顯微鏡下 enterocin 81 對 L. monocytogenes 細胞的影響 ………………………………………………… 189
圖十、溶菌素及 nisin 對 Sta. aureus 細胞膜的影響 …………… 190
圖十一、溶菌素及 nisin 對於 Lb. sake 的影響 ………………… 191
圖十二、Pediocin AcH 與靜水壓對於 Leu. mesenteroides 細胞的 溶菌影響 ………………………………………………… 192
圖十三、Nisin 對於 L. monocytogenes 抗性菌株及野生菌株之作用模式 …………………………………………………… 193
圖十四、Enterocin P 對於 Ent. faecium 敏感或具抗性細胞的作用 模式 ……………………………………………………… 194
圖十五、Enterocin 在乾酪上對 L. innocua LMG 的抑菌效果 … 195


附 錄

附錄Ⅰ、乳酸鏈球菌素在各國的使用狀況 ………………………… 196
附錄Ⅱ、動物、植物及真菌天然抗菌胜肽 ………………………… 198
附錄Ⅲ、洋菜孔洞擴散法 ………………………………………… 200
附錄Ⅳ、不同濃度 nisin 對於革蘭氏陽性菌形成的抗菌環效果 201
附錄Ⅴ、不同濃度 nisin 添加 EDTA 對於革蘭氏陽性菌形成的抗菌環 …………………………………………………… 202
附錄Ⅵ、不同濃度 nisin 對於革蘭氏陰性菌形成的抑菌環效果 203
附錄Ⅶ、不同濃度 nisin 添加 EDTA 對於革蘭氏陰性菌形成的抑菌環 …………………………………………………… 204
附錄Ⅷ、野生株細胞及對 nisin 具抗性細胞在 nisin 存在或缺少時對細胞上磷脂質組成的影響 ………………………… 205
附錄Ⅸ、乳製品分類 ……………………………………………… 206
林慶文。(1993) 乳製品之特性與機能。國立編譯館。華香園出版社。台北。
行政院衛生署。(2003)。衛生法規,食品添加物使用範圍及用量標準,第 (一) 類防腐劑。行政院衛生署,台北。
蘇遠志。(1999) 應用微生物學。國立編譯館。華香園出版社。台北。
Aasen, I. M., Markussen, S., Moretro, T., Katla, T., Axelsson, L. and Naterstad, K. (2003) Interactions of the bacteriocins sakacin P and nisin with food constituents. Int. J. Food Microbiol. 87(1-2): 35-43.
Abee, T., Klaenhammer, T. R. and Letellier, L. (1994) Kinetic studies of the action of lacticin F, a bacteriocin produced by Lactobacillus johnsonii that forms poration complexes in the cytoplasmic membrane. Appl. Environ. Microbiol. 60(3): 1006-1013.
Abee, T., Krockel, L. and Hill, C. (1995) Bacteriocin: Modes of action and potentials in food preservation and control of food poisoning. Int. J. Food Microbiol. 28: 169-185.
Abriouel, H., Maqueda, M., Galvez, A., Martinez-Bueno, M. and Valdivia E. (2002) Inhibition of bacterial growth, enterotoxin production, and spore outgrowth in strains of Bacillus cereus by bacteriocin AS-48. Appl. Environ. Microbiol. 68(3): 1473-1477.
Acton, J. C., Dick, R. L. and Norris, E. L. (1977) Utilization of various carbohydrates in fermented sausage. J. Food Sci. 42: 174-178.
Adams, M. R. (1999) Safety of industrial lactic acisd bacteria. J. Biotechnol. 68: 171-178.
Aktypis, A., Kalantzopoulos, G., Huis in't Veld, J. H. and ten Brink, B. (1998) Purification and characterization of thermophilin T, a novel bacteriocin produced by Streptococcus thermophilus ACA-DC 0040. J. Appl. Microbiol. 84(4): 568-576.
Al Jassim, R. A. (2003) Lactobacillus ruminis is a predominant lactic acid producing bacterium in thecaecum and rectum of the pig. Lett. Appl. Microbiol. 37(3): 213-217.
Allison, G. E. and Klaenhammer, T. R. (1996) Functional analysis of the gene encoding immunity to lactacin F, lafI, and its use as a Lactobacillus-specific, food-grade cenetic marker. Appl. Environ. Microbiol. 62(12): 4450-4460.
Altena, K., Guder, A. Cramer, C. and Bierbaum, G. (2000) Biosynthesis of the lantibiotic mersacidin: Organization of a type B lantibiotic gene cluster. Appl. Environ. Microbiol. 66(6): 2565-2571.
Amézquita, A and Brashears, M. M. (2002) Competitive inhibition of Listeria monocytogenes in ready-to-eat meat products by lactic acid bacteria. J. Food Prot. 65(2): 316-325.
Anderssen, E. L., Diep, D. B., Nes, I. F., Eijsink, V. G. and Nissen-Meyer, J. (1998) Antagonistic activity of Lactobacillus plantarum C11: Two new two-peptide bacteriocins, plantaricins EF and JK, and the induction factor plantaricin A. Appl. Environ. Microbiol. 64(6): 2269-2272.
Annuk, H., Shchepetova, J., Kullisaar, T., Songisepp, E., Zilmer, M. and Mikelsaar, M. (2003) Characterization of intestinal lactobacilli as putative probiotic candidates. J. Appl. Microbiol. 94: 403-412.
Antunes, A., Rainey, F. A, Nobre, M. F., Schumann, P., Ferreira, A. M., Ramos, A., Santos, H. and da, C. M. (2002) Leuconostoc ficulneum sp. nov., a novel lactic acid bacterium isolated from a ripe fig, and reclassification of Lactobacillus fructosus as Leuconostoc fructosum comb. nov. Int. J. Syst. Evol. Microbiol. 52(2): 647-655.
Aplin and Barrett. (1989) Countries where specific approval exists for the use of nisin. Technical Information Sheet 4/89/11. England.
Archer, D. L. (2002) Evidence that ingested nitrate and nitrite are beneficial to health. J. Food Prot. 65(5): 872-875.
Ariyapitipun, T., Mustapha, A. and Clarke, A. D. (1999) Microbial shelf life determination of vacuum-packaged fresh beef treated with polylactic acid, lactic acid, and nisin solutions. J. Food Prot. 62(8): 913-920.
Ariyapitipun, T., Mustapha, A. and Clarke, A. D. (2000) Survival of Listeria monocytogenes Scott A on vacuum-packaged raw beef treated with polylactic acid, lactic acid, and nisin. J. Food Prot. 63(1): 131-136.
Atrih, A., Rekhif, N., Moir, A. J., Lebrihi, A. and Lefebvre, G. (2001) Mode of action, purification and amino acid sequence of plantaricin C19, an anti-Listeria bacteriocin produced by Lactobacillus plantarum C19. Int. J. Food Microbiol. 68(1-2): 93-104.
Axelsson, L., Katla, t., Bjørnslett, M., Eijsink, V. G. H. and Holck, A. (1998) A system for heterologous expression of bacteriocins in Lactobacillus sake. FEMS Microbiol. Lett. 168: 137-143.
Aymerich, T., Artigas, M. G., Garriga, M., Monfort, J. M. and Hugas, M. (2000a) Effect of sausage ingredients and additives on the production of enterocin A and B by Enterococcus faecium CTC492. Optimization of in vitro production and anti-listerial effect in dry fermented sausages. J. Appl. Microbiol. 88(4): 686-694.
Aymerich, T., Garriga, M., Ylla, J., Vallier, J., Monfort, J. M. and Hugas, M. (2000b) Application of enterocins as biopreservatives against Listeria innocusa in meat products. J. Food Port. 63(6): 721-726.
Aymerich, T., Holo, H., Havarstein, L. S., Hugas, M., Garriga, M. and Nes, I. F. (1996) Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins. Appl. Environ. Microbiol. 62(5): 1676-1682.
Bacus, J. N. and Brown, W. L. (1981) Use of microbial cultures: Meat products. Food Technol. 35: 74-78.
Balakrishnan, M., Simmonds, R. S., Carne, A. and Tagg, J. R. (2000) Streptococcus mutans strain N produces a novel low molecular mass non-lantibiotic bacteriocin. FEMS Microbiol. Lett. 183(1): 165-169.
Balakrishnan, M., Simmonds, R.S., Kilian, M. and Tagg, J. R. (2002) Different bacteriocin activities of Streptococcus mutans reflect distinct phylogenetic lineages. J. Med. Microbiol. 51(11): 941-948.
Balla, E., Dicks, L. M., Du Toit, M., Van Der Merwe, M. J. and Holzapfel, W. H. (2000) Characterization and cloning of the genes encoding enterocin 1071A and enterocin 1071B, two antimicrobial peptides produced by Enterococcus faecalis BFE 1071. Appl. Environ. Microbiol. 66(4): 1298-1304.
Barakat, R. K., Griffiths, M. W. and Harris, L. J. (2000) Isolation and characterization of Carnobacterium, Lactococcus, and Enterococcus spp. from cooked, modified atmosphere packaged, refrigerated, poultry meat. Int. J. Food Microbiol. 62(1-2): 83-94.
Bárcena, J. M., Siñeriz, F., González de Llano, D., Rodríguez, A. and Suárez, J. E. (1998) Chemostat production of plantaricin C by Lactobacillus plantarum LL441. Appl. Environ. Microbiol. 64(9): 3512-3514.
Barnby-Smith, M. (1992) Bacteriocins: Applications in food. Trend. Food Sci. Technol. 3: 133-136
Behr, T., Koob, C., Schedl, M., Mehlen, A., Meier, H., Knopp, D., Frahm, E., Obst U., Schleifer, K., Niessner, R. and Ludwig, W. (2000) A nested array of rRNA targeted probes for the detection and identification of enterococci by reverse hybridization. Syst. Appl. Microbiol. 23(4): 563-572.
Benachour, A., Frere, J. and Novel, G. (1995) pUCL287 plasmid from Tetragenococcus halophila (Pediococcus halophilus) ATCC 33315 represents a new theta-type replicon family of lactic acid bacteria. FEMS Microbiol. Lett. 128(2): 167-175.
Benech, R. O., Kheadr, E. E., Laridi, R., Lacroix, C. and Fliss, I. (2002) Inhibition of Listeria innocua in cheddar cheese by addition of nisin Z in liposomes or by in situ production in mixed culture. Appl. Environ. Microbiol. 68(8): 3683-3890.
Benkerroum, N. Oubel, H. Zahar, M. Dlia, S. and Maltouf, A. F. (2000) Isolation of a bacteriocin-producing Lactococcus lactis subsp. lactis and application to control Listeria monocytogenes in Moroccan jben. J. Appl. Microbiol. 89(6): 960-968.
Benkerroum, N., Oubel, H. and Mimoun L. B. (2002) Behavior of Listeria monocytogenes and Staphylococcus aureus in yogurt fermented with a bacteriocin-producing thermophilic starter. J. Food. Prot. 65(5): 799-805.
Bennik, M. H., Verheul, A., Abee, T., Naaktgeboren-Stoffels G., Gorris L. G. and Smid, E. J. (1997) Interactions of nisin and pediocin PA-1 with closely related lactic acid bacteria that manifest over 100-fold difference in bacteriocin sensitivity. Appl. Environ. Microbiol. 63(9): 3628-3636.
Berger-Bachi, B. and Rohrer, S. (2002) Factors influencing methicillin resistance in staphylococci. Arch. Microbiol. 178(3): 165-171.
Beuchat, L. R., Clavero, M. R. S., and Jaquette, C. B. (1997) Effects of nisin and temperature on survival, growth, and enterotoxin production characteristics of psychrophic Bacillus cereus in beef gravy. Appl. Environ. Microbiol. 63(5): 1953-1958.
Bhugaloo-Vial, P., Dousset, X., Metivier, A., Sorokine, O., Anglade, P., Boyaval, P. and Marion, D. (1996) Purification and amino acid sequences of piscicocins V1a and V1b, two class IIa bacteriocins secreted by Carnobacterium piscicola V1 that display significantly different levels of specific inhibitory activity. Appl. Environ. Microbiol. 62(12): 4410-4416.
Bhugaloo-Vial, P., Douliez, J. P., Moll, D., Dousset, X., Boyaval, P. and Marion, D. (1999) Delineation of key amino acid side chains and peptide domains for antimicrobial properties of divercin V41, a pediocin-like bacteriocin secreted by Carnobacterium divergens V41. Appl. Environ. Microbiol. 65(7): 2895-2900.
Bhunia, A. K. (1994) Monoclonal antibody-based enzyme immunoassay for pediocins of Pediococcus acidilactici. Appl. Environ. Microbiol. 60(8): 2692-2696.
Bhunia, A. K., Johnson, M. C., Ray, B. and Belden, E. L. (1990) Antigenic property of pediocin AcH produced by Pediococcus acidilactici H. J. Appl. Bacteriol. 69: 211-215.
Bhunia, A. K., Johnson, M. C., Ray, B. and Kalchayanand, N. (1991) Mode of action of pediocin AcH from Pediococcus acidilactici H on sensitive bacterial strains. J. Appl. Bacteriol. 70: 25-33.
Bierbaum, G., Gotz, F., Peschel, A. and Kupke, T. (1996) The biosynthesis of the lantibiotics epidermin, gallidermin, Pep5 and epilancin K7. Antonie van Leeuwenhoek 69(2): 119-127.
Biet, F., Berjeaud, J. M., Worobo, R. W., Cenatiempo, Y. and Fremaux, C. (1998) Heterologous expression of the bacteriocin mesentericin Y105 using the dedicated transport system and the general srcretion pathway. Microbiology 144: 2845-2854.
Bjorkroth, K. J., Schillinger, U., Geisen, R., Weiss, N., Hoste, B., Holzapfel, W. H., Korkeala, H. J. and Vandamme, P. (2002) Taxonomic study of Weissella confusa and description of Weissella cibaria sp. nov., detected in food and clinical samples. Int. J. Syst. Evol. Microbiol. 52(1): 141-148.
Blaiotta, G., Pepe, O., Mauriello, G., Villani, F., Andolfi, R. and Moschetti, G. (2002) 16S-23S rDNA intergenic spacer region polymorphism of Lactococcus garvieae, Lactococcus raffinolactis and Lactococcus lactis as revealed by PCR and nucleotide sequence analysis. Syst. Appl. Microbiol. 25(4): 520-527.
Blom, H., Katla, T., Hagen, B. F. and Axelsson, L. (1997) A model assay to demonstrate how intrinsic factors affect diffusion of bacteriocins. Int. J. Food Microbiol. 38(2-3): 103-109.
Boman, H. G. (2003) Antibacterial peptides: Basic facts and emerging concepts. J. Intern. Med. 254(3): 197-215.
Bonade, A., Murelli, F., Vescovo, M. and Scolari, G. (2001) Partial characterization of a bacteriocin produced by Lactobacillus helveticus. Lett. Appl. Microbiol. 33(2): 153-158.
Bonev, B. B., Chan, W. C., Bycroft, B. W., Roberts, G. C. K. and Watts. (2000) Interaction of the nisin with mixed lipid bilayers: A 31P and 2H NMR study. Biochemistry 39: 11425-11433.
Booth, M. C., Bogie, C. P., Sahl, H. G., Siezen, R. J., Hatter, K. L. and Gilmore, M. S. (1996) Structural analysis and proteolytic activation of Enterococcus faecalis cytolysin, a novel lantibiotic. Mol. Microbiol. 21(6): 1175-1184.
Bouttefroy, A. and Millière, J. B. (2000) Nisin-curvaticin 13 combinations for avoiding the regrowth of bacteriocin resistant cells of Listeria monocytogenes ATCC 15313. Int. J. Food Microbiol. 62(1-2): 65-75.
Boziaris, I. S. and Adams M. R. (1999) Effect of chelators and nisin produced in situ on inhibition and inactivation of Gram-negatives. Int. J. Food Microbiol. 53: 105-113.
Boziaris, I. S. and Adams M. R. (2000) Transient sensitivity to nisin in cold-shocked Gram negatives. Lett. Appl. Microbiol. 31: 233-237.
Brand, G. D., Leite, J. R, Silva, L. P., Albuquerque, S., Prates, M. V., Azevedo, R. B., Carregaro, V., Silva, J. S., Sa, V. C., Brandao, R. A. and Bloch, C. Jr. (2002) Dermaseptins from Phyllomedusa oreades and Phyllomedusa distincta. Anti-Trypanosoma cruzi activity without cytotoxicity to mammalian cells. J. Biol. Chem. 277(51): 49332-49340.
Breukink, E., Van Heusden, H. E., Vollmerhaus, P. J., Swiezewska, E., Brunner, L., Walker, S., Heck, A. J. and De Kruijff, B. (2003) Lipid II is an intrinsic component of the pore induced by nisin in bacterial membranes. J. Biol. Chem. 278(22): 19898-19903.
Breukink, E., Wiedemann, I., Kraaij, C. van., Kuipers, O. P., Sahl, H.-G. and Kruijff, B. (1999) Use of the cell wall precursor lipid II by a pore -forming peptide antibiotic. Science 286(17): 2361-2364.
Brötz, H., Josten, M., Wiedemann, I., Schneider, U., Gotz, F., Bierbaum, G. and Sahl, H. G. (1998) Role of lipid-bound peptidoglycan in the formation of pores by nisin, epidermin and other lantibiotics. Antonie van Leeuwenhoek 69: 119-127.
Budde, B. B., Hornbaek, T., Jacobsen, T., Barkholt, V. and Koch, A. G. (2003) Leuconostoc carnosum 4010 has the potential for use as a protective culture for vacuum-packed meats: Culture isolation, bacteriocin identification, and meat application experiments. Int. J. Food Microbiol. 83(2): 171-184.
Budu-Amoake, Ebo., Ablett, R. F., Harris, J. and Delves-Broughton, J. (1999) Combined effect of nisin and moderate heat destruction of Listeria monocytogenes in cold-pack lobster meat. J. Food Prot. 62(1): 46-50.
Bulet, P., Hegy, G., Lambert, J., van Dorsselaer, A., Hoffmann, J. A. and Hetru, C. (1995) Insect immunity. The inducible antibacterial peptide diptericin carries two O-glycans necessary for biological activity. Biochemistry 34(22): 7394-7400.
Burianek, L. L. and Yousef, A. E. (2000) Solvent extraction of bacteriocins from liquid cultures. Lett. Appl. Microbiol. 31(3): 193-197.
Buyong, N., Kok, J. and Luchansky, J. B. (1998) Use of a genetically enhanced, pediocin-producing starter culture, Lactococcus lactis subsp. lactis MM217, to control Listeria monocytogenes in cheddar cheese. Appl. Environ. Microbiol. 64(12): 4842-4845.
Cabo, M. L., Pastoriza, L., Sampedro, G., Gonzalez, MaP. And Murado, M. A. (2001) Joint effect of nisin, CO2, and EDTA on the survival of Pseudomonas aeruginosa and Enterococcus faecium in a food model system. J. Food Prot. 64(12): 1943-1948.
Cai, Y., Benno, Y., Nakase, T. and Oh, T. K. (1998) Specific probiotic characterization of Weissella hellenica DS-12 isolated from flounder intestine. J. Gen. Appl. Microbiol. 44(5): 311-316。
Cai, Y., Ng, L. K. and Farber, J. M. (1997) Isolation and characterization of nisin-producing Lactococcus lactis subsp. lactis from bean-sprouts. J. Appl. Microbiol. 83: 499-507.
Callewaert, R., Holo, H., Devreese, B., Beeumen, J. V., Nes, I. and Vuyst, L. D. (1999) Characterization and production of amylovorin L471, a bacteriocin purified from Lactobacillus amylovorus DEC 471 by a novel three-step method. Microbiology 145: 2559-2568.
Carpenter, S. L. and Harrison, M. A. (1989) Fate of small populations of Listeria monocytogenes on poultry processed using moist heat. J. Food Prot. 52: 768-770.
Caridi, A. (2002) Selection of Escherichia coli-inhibiting strains of Lactobacillus paracasei subsp. paracasei. J. Ind. Microbiol. Biotechnol. 29(6): 303-308.
Casaus, P., Nilsen, T., Cintas, L. M., Nes, I. F., Hernandez, P. E. and Holo, H. (1997) Enterocin B, a new bacteriocin from Enterococcus faecium T136 which can act synergistically with enterocin A. Microbiology 143 (7): 2287-2294.
Casteels-Josson, K., Capaci, T., Casteels, P. and Tempst, P. (1993) Apidaecin multipeptide precursor structure: A putative mechanism for amplification of the insect antibacterial response. EMBO J. 12(4): 1569-1578.
Casteels, P., Ampe, C., Jacobs, F. and Tempst, P. (1993) Functional and chemical characterization of Hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honeybee (Apis mellifera). J. Biol. Chem. 268(10): 7044-7054.
Casteels, P., Ampe, C., Riviere, L., Van Damme, J., Elicone, C., Fleming, M., Jacobs, F. and Tempst, P. (1990) Isolation and characterization of abaecin, a major antibacterial response peptide in the honeybee (Apis mellifera). Eur. J. Biochem. 187(2): 381-386.
Cetinkaya, S., Osmanagaoglu, O. and Cokmus, C. (2003) Bacteriocin diversity in Bacillus sphaericus. Folia Microbiol. (Praha) 48(2): 157-161.
Chavagnat, F., Haueter, M., Jimeno, J. and Casey, M. G. (2002) Comparison of partial tuf gene sequences for the indetification of lactobacilli. FEMS Micriobiol. Lett. 217: 177-183.
Cheigh, C. I., Choi, H. J., Park, H., Kim, S. B., Kook, M. C., Kim, T. S., Hwang, J. K. and Pyun, Y. R. (2002) Influence of growth conditions on the production of a nisin-like bacteriocin by Lactococcus lactis subsp. lactis A164 isolated from kimchi. J. Biotechnol. 95(3): 225-235.
Chen, H. M., Leung, K. W., Thakur, N. N., Tan, A. and Jack, R. W. (2003) Distinguishing between different pathways of bilayer disruption by the related antimicrobial peptides cecropin B, B1 and B3. Eur. J. Biochem. 270(5): 911-920.
Chen, P., Novák, J., Kirk, M., Barnes, S., Qi, F. and Caufield, P. W. (1998a) Structure-activity study of the mutacin II from Streptococcus mutans T8 by a gene replacement strstegy. Appl. Environ. Microbiol. 64(7): 2335-2340.
Chen, P., Novák, J., Qi, F. and Caufield, P. W. (1998b) Diacylglycerol kinase is involved in regulation of expression of the lantibiotic mutacin II of Streptococcus mutans. J. Bacteriol. 180(1): 167-170.
Chen, P., Qi, F., Novak, J. Krull, R. E, and Caufield, P. W. (2001) Effect of amino acid substitutions in conserved residues in the leader peptide on biosynthesis of the lantibiotic mutacin II. FEMS Microbiol. Lett. 195(2): 139-144.
Chen, Y., Shapira, R., Eisenstein, M. and Montville, T. J. (1997) Functional characterization of pediocin PA-1 binding to liposomes in the absence of a protein receptor and its relationship to a predicted tertiary structure. Appl. Environ. Microbiol. 63(2): 524-531.
Chikindas, M. L., Garcia-Garcera, M. J., Driedden, A. J. M., Ledeboer, A. M., Nissen-Meyer, J., Nes, I. F., Abee, T., Konings, W. N. and Venema, G. (1993) Pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1.0, forms hydrophilic pores in the cytoplasmic membrane of target cells. Appl. Environ. Microbiol. 59(11): 3577-3584.
Chikindas, M. L., Novak, J., Driessen, A. J., Konings, W. N., Schilling, K. M. and Caufield, P. W. (1995) Mutacin II, a bactericidal antibiotic from Streptococcus mutans. Antimicrob. Agents Chemother. 39(12): 2656-2660.
Chin, H. S., Shim, J. S., Kim, J. M., Yang, R. and Yoon, S. S. (2001) Detection and antibacterial activity of a bacteriocin produced by Lactobacillus plantarum. Food Sci. Biotechnol. 10(4): 335-341.
Choi, H. J., Cheigh, C. I., Kim, S. B., Lee, J. C., Lee, D. W., Choi, S. W., Park, J. M. and Pyun, Y. R. (2002) Weissella kimchii sp. nov., a novel lactic acid bacterium from kimchi. Int. J. Syst. Evol. Microbiol. 52(2): 507-511.
Choi, H. J., Cheigh, C. I., Kim, S. B. and Pyun, Y. R. (2000) Production of nisin–like bacteriocin by Lactococcus lactis subsp. lactis A164 isolated from kimchi. J. Appl. Microbiol. 88: 563-571.
Choi, H. J., Lee, H. S., Her, S., Oh, D. H. and Yoon, S. S. (1999) Partial characterization and cloning of leuconocin J, a bacteriocin produced by Leuconostoc sp. J2 isolated from the Korean fermented vegetable kimchi. J. Appl. Microbiol. 86(2): 175-181.
Choi, H. J. and Park, Y. H. (2000) Selective control of lactobacilli in kimchi with nisin. Lett. Appl. Microbiol. 30: 173-177.
Chun, W. and Hancock, R. E. W. (2000) Action of lysozyme and nisin mixtures against lactic acid bacteria. Int. J. Food Microbiol. 60: 25-32.
Cilmore, M. S.kaugen, W. and Nes, I. (1996) Enterococcus faecalis cytolysin and lactocin S of Lactobacillus sake. Antonie van Leeuwenhoek 69: 129-138.
Cintas, L. M., Casaus, P., Havarstein, L. S., Hernandez, P. E. and Nes, I. F. (1997) Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin form Enterococcus faceium P13 with a broad antimicrobial spectrum. Appl. Environ. Microbiol. 63(11): 4321-4330.
Cintas, L. M., Fernandaz, M. F. and Harnande, P. E. (1998) Comparative antimicrobial activity of enterocin L50, pediocin PA-1, nisin A and lactocin S against spoilage and foodborne pathogenic bacteria. Food Microbiol. 15: 289-298.
Cintas, L. M., Rodriguez, J. M., Fernandez, M. F., Sletten, K., Nes, I. F., Hernandez, P. E. and Holo, H. (1995) Isolation and characterization of pediocin L50, a new bacteriocin from Pediococcus acidilactici with a broad inhibitory spectrum. Appl. Environ. Microbiol. 61(7): 2643-2648.
Clevland, J., Montville, T. J., Nes, I. F. and Chikindas, M. L. (2001) Bacteriocins: Safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71: 1-20.
Coffey, A. and Ross, R. P. (2002) Bacteriophage-resistance systems in dairy starter strains: Molecular analysis to application. Antonie van Leeuwenhoek 82(1-4): 303-321.
Coffey, A., Ryan, M., Ross, R. P., Hill, C., Arendt, E. and Schwarz, G. (1998) Use of a broad-host-range bacteriocin-producing Lactococcus lactis transconjugant as an alternative starter for salami manufacture. Int. J. Food Microbiol. 43(3): 231-235.
Cole, A. M., Liao H. I., Ganz, T. and Yang, O. O. (2003) Antibacterial activity of peptides derived from envelope glycoproteins of HIV-1. FEBS Lett. 535(1-3): 195-199.
Collins, M. D., Samelis, J., Metaxopoulos, J. and Wallbanks, S. (1993) Taxonomic studies on some leuconostoc-like organisms from fermented sausages: Description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J. Appl. Bacteriol. 75(6): 595-603.
Collins, M. D., Williams, A. M. and Wallbanks, S. (1990) The phylogeny of Aerococcus and Pediococcus as determined by 16S rRNA sequence analysis: Description of Tetragenococcus gene. FEM Microbiol. Lett. 70: 255-262.
Coma, V., Sebti, I., Pardon, P., Dedchamps, A. and Pichavani, F. H. (2001) Antimicrobial edible packaging based on cellulosic ethers, fatty acids, and nisin incorporation to inhibit Listeria innocua and Staphylococcus aureus. J. Food Prot. 64: 470-475.
Connil, N., Plissoneau, L., Onno, B., Pilet, M. F., Prévost, H. and Dousset, X. (2002) Growth of Carnobacterium divergens V41 and production of biogenic amines and divercin V41 in sterile cold-smoked salmon extract at varying temperatures, NaCl levels, and glucose concentrations. J. Food Prot. 5(2): 333-338.
Contreras, B. G., De Vuyst, L., Devreese, B., Busanyova, K., Raymaeckers, J., Bosman, F., Sablon, E. and Vandamme, E. J. (1997) Isolation, purification, and amino acid sequence of lactobin A, one of the two bacteriocins produced by Lactobacillus amylovorus LMG P-13139. Appl. Environ. Microbiol. 63(1): 13-20.
Corbier, C., Krier, F., Mulliert, G., Vitoux, B. and Revol-Junelles, A. M. (2001) Biological activities and structural properties of the atypical bacteriocins mesenterocin 52B and leucocin B-TA33a. Appl. Environ. Microbiol. 67(4): 1418-1422.
Corsetti, A., De Angelis, M., Dellaglio, F., Paparella, A., Fox, P. F., Settanni, L. and Gobbetti, M. (2003) Characterization of sourdough lactic acid bacteria based on genotypic and cell-wall protein analyses. J. Appl. Microbiol. 94(4): 641-654.
Cotta, M. A., Whitehead, T. R. and Zeltwanger, R. L. (2003) Isolation, characterization and comparison of bacteria from swine faeces and manure storage pits. Environ. Microbiol. 5(9): 737-745.
Coventry, M. J., Gordon, J. B., Alexander, M., Hickey, M. W. and Wan, J. (1996) A food-grade process for isolation and partial purification of bacteriocins of lactic acid bacteria that uses diatomite calcium silicate. Appl. Environ. Microbiol. 62(5): 1764-1769.
Coventry, M. J., Gordon, J. B., Wilcock, A., Harmark, K., Davidson, B. E., Hickey, M. W., Hillier, A. J. and Wan, J. (1997) Detection of bacteriocins of lactic acid bacteria isolated from foods and comparison with pediocin and nisin. J. Appl. Microbiol. 83(2): 248-258.
Coventry, M. J., Muirhead, K. and Hickey, M. W. (1995) Partial characterisation of pediocin PO2 and comparison with nisin for biopreservation of meat products. Int. J. Food Microbiol. 26(2): 133-145.
Crandall, A. and Montville, T. J. (1998) Nisin resistance in Listeria monocytogenes ATCC 700302 is a complex phenotype. Appl. Environ. Microbiol. 64(1): 231-237.
Crandall, A., Winkowski, K. and Montville, T. J. (1994) Inability of Pediococcus pentosaceus to inhibit Clostridium botulinum in sous vide beef with gravy at 4 and 10oC. J. Food Prot. 57: 104-107.
Cudic, M. and Otvos, L. J. (2002) Intracellular targets of antibacterial peptides. Curr. Drug Targets 3: 101-106.
Cuozzo, S. A., Castellano, P., Sesma, F. J., Vignolo, G. M. and Raya, R. R. (2003) Differential roles of the two-component peptides of lactocin 705 in antimicrobial activity. Curr. Microbiol. 46(3): 180-183.
Cuozzo, S. A., Sesma, F., Palacios, J. M., de Ruiz Holgado, A. P. and Raya, R. R. (2000) Identification and nucleotide sequence of genes involved in the synthesis of lactocin 705, a two-peptide bacteriocin from Lactobacillus casei CRL 705. FEMS Microbiol. Lett. 185(2): 157-161.
Cutter, C. N. and Siragusa, G. R. (1998) Incorporation of nisin into a meat binding system to inhibit bacteria on beef surfaces. Lett. Appl. Microbiol. 27: 19-23.
Cutter, C. N., and Siragusa, G. R. (1995) Population reduction of Gram-negitive pathogens following treatments with nisin and chelators under various conditions. J. Food Prot. 58: 977-983.
Daeschel, M. A. (1989) Antimicrobial substances from lactic acid bacteria for use as food preservatives. Food Technol. 43: 164-167.
Daeschel, M. A. and Klaenhammer, T. R. (1985) Association of a 13.6-megadalton plasmid in Pediococcus pentosaceus with bacteriocin activity. Appl. Environ. Microbiol. 50: 2534-2538.
Davies, E. A., Falahee, M.B. and Adams, M.R. (1996) Involvement of the cell envelope of Listeria monocytogenes in the acquisition of nisin resistance. J. Appl. Bacteriol. 81: 139-146.
Davies, E. A., Milne, C. F., Bevis, H. E., Potter R. W., Harris, J. M., Williams, G. C., Thomas, L. V. and Delves-Broughton J. (1999) Effective use of nisin to control lactic acid bacterial spoilage in vacuum-packed bologna-type sausage. J. Food Prot. 62(9): 1004-1010.
Degnan, A. J., Buyong, N. and Luchansky,J. B. (1993) Antilisterial activity of pediocin AcH in model food systems in the presence of nisin of an emulsifier or encapsulated within liposomes. Int. J. Food Microbiol. 18: 127-138.
Delgado, A., Brito, D., Fevereiro, P., Peres, C. and Marques, J. F. (2001) Antimicrobial activity of L. plantarum, isolated from a traditional lactic acid fermentation of table olives. Health 81: 203-215.
Delves-Broughton, J. (1990) Nisin and its uses as a food preservative. Food Technol. pp. 100-112.
Delves-Broughton, J., Blackburn, P. Evans, R. J. and Hugenholtq, J. (1996) Applications of the bacteriocin, nisin. Antome van Leeuwenhoek 69: 193-202.
De Martinis, E. C. and Franco, B. D. (1998) Inhibition of Listeria monocytogenes in a pork product by a Lactobacillus sake strain. Int. J. Food Microbiol. 42(1-2): 119-126.
Desiere, F., Lucchini, S., Canchaya, C., Ventura, M. and Brussow, H. (2002) Comparative genomics of phages and prophages in lactic acid bacteria. Antonie van Leeuwenhoek 82(1-4): 73-91.
de Vos, W. M. and Kuipers, O. P. (1995) Maturation pathway of nisin and other lantibiotics: Post-translationally modified antimicrobial peptides exported by Gram-positive bacteria. Molecular Microbiol. 17(3): 427-437.
de Vos, W. M., Mulders, J. W. M., Siezen, R. J., Hugenholtz, J. and Kuipers, O. P. (1993) Properties of nisin Z and distribution of its gene, nisZ., in Lactococcus lactis. Appl. Environ. Microbiol. 59(1): 213-218.
De Vuyst, L., Schrijvers, V., Paramithiotis, S., Hoste, B., Vancanneyt, M., Swings, J., Kalantzopoulos, G., Tsakalidou, E. and Messens, W. (2002) The biodiversity of lactic acid bacteria in Greek traditional wheat sourdoughs is reflected in both composition and metabolite formation. Appl. Environ. Microbiol. 68(12): 6059-6069.
Dewhirst, F. E., Paster, B. J., Tzellas, N., Coleman, B., Downes, J., Spratt, D. A. and Wade, W. G. (2001) Characterization of novel human oral isolates and cloned 16S rDNA sequences that fall in the family coriobacteriaceae: Description of olsenella gen. nov. reclassification of Lactobacillus uli as Olsenella uli comb. nov. and description of Olsenella profusa sp. nov. Int. J. Syst. Evol. Microbiol. 51(5): 1797-1804.
Diep, D. B., Axelsson, L., Grefsli, C. and Nes, I. F. (2000) The synthesis of the bacteriocin sakacin A is a temperature-sensitive process regulated by a pheromone peptide through a three- component regulatory system. Microbiology 146(9): 2155-2160.
Diep, D. B., Håvarstein, L. S. and Nes, I. F. (1996) Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum C11. J. Bacteriol. 178(15): 4472-4483.
Divol, B., Tonon, T., Morichon, S., Gindreau, E. and Lonvaud-Funel, A. (2003) Molecular characterization of Oenococcus oeni genes encoding proteins involved in arginine transport. J. Appl. Microbiol. 94(4): 738-746.
Dobson, C. M., Deneer, H., Lee, S., Hemmingsen, S., Glaze, S. and Ziola, B. (2002) Phylogenetic analysis of the genus Pediococcus, including Pediococcus claussenii sp. nov., a novel lactic acid bacterium isolated from beer. Int. J. Syst. Evol. Microbiol. 52(6): 2003-2010.
Dubernet, S., Desmasures, N. and Gueguen, M. (2002) A PCR-based method for identification of lactobacilli at the genus level. FEMS Microbiol. Lett. 214(2):271-275.
Duffes, F., Corre, C., Leroi, F., Dousset, X. and Boyaval, P. (1999) Inhibition of Listeria monocytogenes by in situ produced and semipurified bacteriocins of Carnobacterium spp. on vacuum-packed, refrigerated cold-smoked salmon. J. Food Prot. 62(12): 1394-1403.
Duffes, F., Jenoe, P. and Boyaval, P. (2000) Use of two-dimensional electrophoresis to study differential protein expression in divercin V41-resistant and wild-type strains of Listeria monocytogenes. Appl. Environ. Microbiol. 66(10): 4318-4324.
du Toit, M., Franz, C. M., Dicks, L. M. and Holzapfel, W. H. (2000) Preliminary characterization of bacteriocins produced by Enterococcus faecium and Enterococcus faecalis isolated from pig faeces. J. Appl. Microbiol. 88(3): 482-494.
Dykes, G. A. Amarowicz, R. and Pegg, R. B. (2003) Enhancement of nisin antibacterial activity by a bearberry (Arctostaphylos uva-ursi) leaf extract. Food Microbiol. 20: 211-216.
Dykes, G. A. and Hastings, J. W. (1998) Fitness costs associated with class IIa bacteriocin resistance in Listeria monocytogenes B73. Lett. Appl. Microbiol. 26(1): 5-8.
Eguchi, T., Kaminaka, K., Shima, J., Kawamoto, S., Mori, K., Choi, S. H., Doi, K., Ohmomo, S. and Ogata, S. (2001) Isolation and characterization of enterocin SE-K4 produced by thermophilic enterococci, Enterococcus faecalis K-4. Biosci. Biotechnol. Biochem. 65(2): 247-253.
Eijsink, V. G., Brurberg, M. B., Middelhoven, P. H. and Nes, I. F. (1996) Induction of bacteriocin production in Lactobacillus sake by a secreted peptide. J. Bacteriol. 178(8): 2232-2237.
Elegado, F. B., Kim, W. J. and Kwon, D. Y. (1997) Rapid purification, partial characterization, and antimicrobial spectrum of the bacteriocin, pediocin AcM, from Pediococcus acidilactici M. Int. J. Food Microbiol. 37(1): 1-11.
Elotmani, F., Revol-Junelles, A. M., Assobhei, O. and Milliere, J, B. (2002) Characterization of anti-Listeria monocytogenes bacteriocins from Enterococcus faecalis, Enterococcus faecium, and Lactococcus lactis strains isolated from raib, a Moroccan traditional fermented milk. Curr. Microbiol. 44(1): 10-17.
El-Ziney, M. G., van den Tempel, T., Debevere, J. and Jakobsen, M. (1999) Application of reuterin produced by Lactobacillus reuteri 12002 for meat decontamination and preservation. J. Food Prot. 62(3): 257-261.
Enan, G., el-Essawy, A. A., Uyttendaele, M. and Debevere, J. (1996) Antibacterial activity of Lactobacillus plantarum UG1 isolated from dry sausage: Characterization, production and bactericidal action of plantaricin UG1. Int. J. Food Microbiol. 30(3): 189-215.
Ennahar, S., Aoude-Werner, D., Assobhei O. and Hasselmann, C. (1998a) Antilisterial activity of enterocin 81, a bacteriocin produced by Enterococcus faecium WHE 81 isolated from cheese. J. Appl. Microbiol. 85(3): 521-526.
Ennahar, S., Aoude-Werner, D., Sorokine, O., Van Dorsselaer, A., Bringel, F., Hubert, J. C. and Hasselmann, C. (1996) Production of pediocin AcH by Lactobacillus plantarum WHE 92 isolated from cheese. Appl. Environ. Microbiol. 62(12): 4381-4387.
Ennahar, S., Asou, Y., Zendo, T., Sonomoto, K. and Ishizaki, A. (2001) Biochemical and genetic evidence for production of enterocins A and B by Enterococcus faecium WHE 81. Int. J. Food Microbiol. 70(3): 291-301.
Ennahar, S., Assobhel, O. and Hasselmann, C. (1998b) Inhibition of Listeria monocytogenes in a smear-surface soft cheese by Lactobacillus plantarum WHE 92, a pediocin AcH producer. J. Food Prot. 61(2): 186-191.
Ennahar, S., Cai, Y. and Fujita, Y. (2003) Phylogenetic diversity of lactic acid bacteria associated with paddy rice silage as determined by 16S ribosomal DNA analysis. Appl. Environ. Microbiol. 69(1): 444-451.
Ennahar, S. and Deschamps, N. (2000) Anti-Listeria effect of enterocin A, produced by cheese-isolated Enterococcus faecium EFM01, relative to other bacteriocins from lactic acid bacteria. J. Appl. Microbiol. 88(3): 449-457.
Ennahar, S., Sashihara, T., Sonomoto, K. and Ishizaki, A. (2000) Class IIa bacteriocins: Biosynthesis, structure and activity. FEMS Microbiol. Rev. 24: 85-106.
Entian, K. D. and de Vos, W. M. (1996) Genetics of subtilin and nisin biosyntheses. Antonie van Leeuwenhoek 69: 109-117.
Faille, C., Membre, J. M., Kubaczka, M. and Gavini, F. (2002) Altered ability of Bacillus cereus spores to grow under unfavorable conditions (presence of nosin, low temperature, acidic pH, presence of NaCl) following heat treatment during sporuation. J. Food Prot. 65(12): 1930-1936.
Fang, T. J. and Lin, L. W. (1994) Growth of Listeria monocytogenes and Pseudomonas fragi on cooked pork in a modified atmosphere packaging/nisin combination system. J. Food Prot. 57(6): 479-485.
Fang, H. H., Liu, H. and Zhang, T. (2002) Characterization of a hydrogen-producing granular sludge. Biotechnol. Bioeng. 78(1): 44-52.
Faye, T., Brede, D. A., Langsrud, T., Nes, I. F. and Holo, H. (2002) An antimicrobial peptide is produced by extracellular processing of a protein from Propionibacterium jensenii. J. Bacteriol. 184(13): 3649-3656.
Ferchichi, M., Frere, J., Mabrouk, K. and Manai, M. (2001) Lactococcin MMFII, a novel class IIa bacteriocin produced by Lactococcus lactis MMFII, isolated from a Tunisian dairy product. FEMS Microbiol. Lett. 205(1): 49-55.
Fernández, M. F. Boris, S. and Barbés, C. (2003) Probiotic properties of human lactobacilli strains to be used in the gastrointestinal tract. J. Appl. Microbiol. 94: 449-455.
Fimland, G., Eijsink, V. G. and Nissen-Meyer, J. (2002) Comparative studies of immunity proteins of pediocin-like bacteriocins. Microbiology 148(11): 3661-3670.
Fimland, G., Jack, R., Jung, G., Nes, I. F. and Nissen-Meyer, J. (1998) The bactericidal activity of pediocin PA-1 is specifically inhibited by a 15-mer fragment that spans the bacteriocin from the center toward the C-terminus. Appl. Environ. Microbiol. 64(12): 5057-5060.
Fitzgerald, D. H., Coleman, D. C. and O'Connell, B. C. (2003) Susceptibility of Candida dubliniensis to salivary histatin 3. Antimicrob. Agents Chemother. 47(1): 70-76.
Flad, T., Bogumil, R., Tolson, J., Schittek, B., Garbe, C., Deeg, M., Mueller, C. A. and Kalbacher, H. (2002) Detection of dermcidin-derived peptides in sweat by ProteinChip technology. J. Immunol. Methods 270(1): 53-62.
Floriano, B., Ruiz-Barba, J. L. and Jiménez-Díaz, R. (1998) Purification and genetic characterization of enterocin I from Enterococcus faecium 6T1a, a novel antilisterial plasmid-encoded bacteriocin which does not belong to the pediocin family of bacteriocins. Appl. Environ. Microbiol. 64(12): 4883-4890.
Flynn, S., van Sinderen, D., Thornton, G. M., Holo, H., Nes, I. F. and Collins, J. K. (2002) Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarius subsp. salivarius UCC118. Microbiology 148(4): 973-984.
Folli, C., Ramazzina, I., Arcidiaco, P., Stoppini, M. and Berni, R. (2003) Purification of basteriocin AS-48 from an Enterococcus faecium strain and analysis of the gene cluster involved in its production. FEMS Microbiol. Lett. 221: 143-149.
Fomenko, D. E., Metlitskaya, A. Z., Peduzzi, J., Goulard, C., Katrukha, G. S., Gening, L. V., Rebuffat, S. and Khmel, I. A. (2003) Microcin C51 plasmid genes: possible source of horizontal gene transfer. Antimicrob. Agents Chemother. 47(9): 2868-2874.
Foulquié Moreno, M. R., Callewaert, R., Devreese, B., van Beeumen, J. and De Vuyst, L. (2003a) Isolation and biochemical characterisation of enterocins produced by enterococci from different sources. J. Appl. Microbiol. 94(2): 214-219.
Foulquié Moreno, M. R., Leisner, J. J., Tee, L. K., Ley, C., Radu, S., Rusul, G., Vancanneyt, M. and De Vuyst, L. (2002) Microbial analysis of Malaysian tempeh, and characterization of two bacteriocins produced by isolates of Enterococcus faecium. J. Appl. Microbiol. 92(1): 147-157.
Foulquié Moreno, M. R., Rea, M. C., Cogan, T. M. and De Vuyst, L. (2003b) Applicatility of a bacteriocin-producing Enterococcus faecium as a co-culture in Cheddar cheese manufacture. Int. J. Microbiol. 81: 73-84.
Franz, C. M. Du Toit, M., Olasupo, N. A. Schillinger, U. and Holzapfel, W. H. (1998) Plantaricin D, a bacteriocin produced by Lactobacillus plantarum BFE 905 from ready-to-eat salad. Lett. Appl. Microbiol. 26: 231-235.
Franz, C. M., Grube, A., Herrmann, A., Abriouel, H., Starke, J., Lombardi, A., Tauscher, B. and Holzapfel, W. H. (2002) Biochemical and genetic characterization of the two-peptide bacteriocin enterocin 1071 produced by Enterococcus faecalis FAIR-E 309. Appl. Environ. Microbiol. 68(5): 2550-2254.
Franz, C. M., Schillinger, U. and Holzapfel, W. H. (1996) Production and characterization of enterocin 900, a bacteriocin produced by Enterococcus faecium BFE 900 from black olives. Int. J. Food Microbiol. 29(2-3): 255-270.
Franz, C. M., Stiles, M. E. and van Belkum, M. J. (2000) Simple method to identify bacteriocin induction peptides and to auto- induce. FEMS Microbiol. Lett. 186(2): 181-185.
Fremaux, C., Hechard, Y. and Cenatiempo, Y. (1995) Mesentericin Y105 gene clusters in Leuconostoc mesenteroides Y105. Microbiology 141 (7): 1637-1645.
Galvin, M., Hill, C. and Ross, R. P. (1999) Lacticin 3147 displays activity in buffer against gram-positive bacterial pathogens which appear insensitive in standard plate assays. Lett. Appl. Microbiol. 28(5): 355-358.
Gänzle, M. G., Hertel, C. and Hammes, P. (1999a) Resistance of Escherichia coli and Salmonella against nisin and curvacin A. Int. J. Food Microbiol. 48: 37-50.
Gänzle, M. G., Hertel, C., van der Vossen J. M, and Hammes, W. P. (1999b) Effect of bacteriocin-producing lactobacilli on the survival of Escherichia coli and Listeria in a dynamic model of the stomach and the small intestine. Int. J. Food Microbiol. 48(1): 21-35.
García-Graells, C., Masschalck, B. and Michiels, C. W. (1999) Inactivation of Escherichia coli in milk by high-hydrostatic-pressure treatment in combination with antimicrobial peptides. J. Food Prot. 62(11): 1248-1254.
Garcia-Graells, C., Van Opstal, I., Vanmuysen, S. C. and Michiels, C. W. (2003) The lactoperoxidase system increases efficacy of high-pressure inactivation of foodborne bacteria. Int. J. Food Microbiol. 81(3): 211-221.
Garneau, S., Martin, N. I. and Vederas, J. C. (2002) Two-peptide bacteriocins produced by lactic acid bacteria. Biochimie 84(5-6): 577-592.
Gaussier, H., Morency, H., Lavoie, M. C. and Subirade, M. (2002) Replacement of trifluoroacetic acid with HCl in the hydrophobic purification steps of pediocin PA-1: A structural effect. Appl. Environ. Microbiol. 68(10): 4803-4808.
Genco, C. A., Maloy, W. L., Kari, U. P. and Motley, M. (2003) Antimicrobial activity of magainin analogues against anaerobic oral pathogens. Int. J. Antimicrob. Agents 21(1): 75-78.
Georgalaki, M. D., Van Der Berghe, E., Kritikos, D., Devreese, B., Van Beeumen, J., Kalantzopoulos, G., De Vuyst, L. and Tsakalidou, E. (2002) Macedocin, a food-grade lantibiotic produced by Streptococcus macedonicus ACA-DC198. Appl. Environ. Microbiol. 68(12): 5891-5903.
Germond, J. E., Mamin, O. and Mollet B. (2002) Species specific identification of nine human Bifidobacterium spp. in feces. Syst. Appl. Microbiol. 25(4): 536-543.
Giacomini, A., Squartini, A. and Nuti, M. P. (2000) Nucleotide sequence and analysis of plasmid pMD136 from Pediococcus pentosaceus FBB61 (ATCC43200) involved in pediocin A production. Plasmid 43(2): 111-122.
Gill, A, O. and Holley, R. A. (2000) Surface application of lysozyme, nisin, and EDTA to inhibit spoilage and pathogenic bacteria on ham and bologna. J. Food Prot. 63(10): 1338-1346.
Gill, A, O. and Holley, R. A. (2003) Interactive inhibition of meat spoilage and pathogenic bacteria by lysozyme, nisin and EDTA in the presence of nitrite and sodium chloride at 24 degrees C. Int. J. Food Microbiol. 80(3): 251-259.
Gilmore, M. S., Skaugen, M. and Nes, I. (1996) Enterococcus faecalis cytolysin and lactocin S of Lactobacillus sake. Antonie van Leeuwenhoek 69(2): 129-138.
Gould, G. W. (1964) Effect of food preservatives on the growth of bacteria from spores. In Microbial Inhibtors in Foods, ed. G. Molin, 17-24. Stockholm: Almquist & Wiksell.
Goulhen, F., Meghrous, J. and Lacroix, C. (1999) Production of nisin Z/pediocin mixture by pH-controlled mixed-strain batch cultures in supplemented whey permeate. J. Appl. Microbiol. 86: 399-406.
Gravesen, A., Axelsen, A. M. J., Silva, J. M., Hansen, T. B. and Knochel, S. (2002a) Frequency of bacteriocin resistance development and associated fitness costs in Listeria monocytogenes. Appl. Environ. Microbiol. 68(2): 756-764.
Gravesen, A., Ramnath, M., Björn Rechinger, K., Andersen, N., Jänsch, L., Héchard, Y, Hastings, J. W. and Knøchel, S. (2002b) High-level resistance to class IIa bacteriocins is associated with one general mechanism in Listeria monocytogenes. Microbiology 148(8): 2361-2369.
Gravesen, A., Sorensen, K., Aarestrup, F. M. and Knochel, S. (2001) Spontaneous nisin-resistant Listeria monocytogenes mutants with increased expression of a putative penicillin-binding protein and their sensitivity to various antibiotics. Microb. Drug Resist. 7(2): 127-135.
Gravesen, A., Warthoe, P., Knøchel, S. and Thirstrup, K. (2000) Restriction fragment differential display of pediocin-resistant Listeria monocytogenes 412 mutants shows consistent overexpression of a putative β-glucoside-specific PTS system. Microbiology 146: 1381-1389.
Green, G., Dicks, L. M. T., Bruggeman, G., Vandamme, E. J. and Chikindas, M. L. (1997) Pediocin PD-1, a bactericidal antimicrobial peptide from Pediococcus damnosus NCFB 1832. J. Appl. Microbiol. 83:127-132.
Guerra, N, P. Rua, M. L. and Psatrana, L. (2001) Nutritional factors affecting the production of two bacteriocins from lactic acid bacteria on whey. Int. J. Food Microbiol. 70: 267-281.
Guerra, N, P. and Psatrana, L. (2002) Nisin and pediocin production on mussel-processing waste supplemented with glucose and five nitrogen sources. Lett. Appl. Microbiol. 34: 114-118.
Guerrini, S., Bastianini, A., Blaiotta, G., Granchi, L., Moschetti, G., Coppola, S., Romano, P. and Vincenzini, M. (2003) Phenotypic and genotypic characterization of Oenococcus oeni strains isolated from Italian wines. Int. J. Food Microbiol. 83(1): 1-14.
Guiotto, A., Pozzobon, M., Canevari, M. Manganelli, R., Scarin, M. and Veronese, F. M. (2003) PEGylation of the antimicrobial peptide nisin A: Problems and perspectives. Farmaco 58: 45-50.
Guyonnet, D., Faremaux, C., Cenatiempo, Y. and Berjeaus, J. M. (2000) Method for rapid purification of class IIa bacteriocins and comparison of their activities. Appl. Environ. Microbiol. 66(4): 1744-1748.
Halami, P. M., Ramesh, A. and Chandrashekar, A. (2000) Megaplasmid encoding novel sugar utilizing phenotypes, pediocin production and immunity in Pediococcus acidilactici C20. Food Microbiol. 17: 475-483.
Hammes, W. P. and Tichaczek, P. S. (1994) The potential of lactic acid bacteria for the production of safe and wholesome food. Zlebensm Umers Forsch 198: 193-201.
Hancock, R. E. W. and Chapple, D. S. (1999) Minireview: Peptide antibiotics. Antimicrob. Agents Chemother. 43(6): 1317-1323.
Hansen, E. B. (2002) Commercial bacterial starter cultures for fermented foods of the future. Int. J. Food Microbiol. 78: 119-131.
Harmsen, H. J., Wildeboer-Veloo, A. C., Grijpstra, J., Knol, J., Degener, J. E. and Welling, G. W. (2000) Development of 16S rRNA-based probes for the Coriobacterium group and the Atopobium cluster and their application for enumeration of Coriobacteriaceae in human feces from volunteers of different age groups. Appl. Environ. Microbiol. 66(10): 4523-4527.
Harp, E. and Gilliland, S. E. (2003) Evaluation of a select strain of Lactobacillus delbrueckii subsp. lactis as a biological control agent for pathogens on fresh-cut vegetables stored at 7 degrees C. J. Food Prot. 66(6): 1013-1018.
Harros, L, J., Fleming, H. P. and Klaenhammer, R. T. (1991) Sensitivity and resistance of Listeria monocytogenes ATCC 19115 , Scott A and UAK 500 to nisin. J. Food Prot. 54: 836-840.
Hastings, J. W., Sailer, M., Johnson, K., Roy, K. L., Vederas, J. C. and Stiles, M. E. (1991) Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum. J. Bacteriol. 173(23): 7491-7500.
Hauge, H. H., Mantzilas, D., Eijsink, V. G. and Nissen-Meyer, J. (1999) Membrane-mimicking entities induce structuring of the two-peptide bacteriocins plantaricin E/F and plantaricin J/K. J. Bacteriol. 181(3): 740-747.
Hechard, Y. and Sahl, H. G. (2002) Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie 84(5-6): 545-557.
Heikkila, M. P. and Saris, P. E. (2003) Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J. Appl. Microbiol. 95(3): 471-478.
Helander, I. M. and Mattila-Sandholm, T. (2000) Permeability barrier of the Gram-negitive bacterial outer membrane with special reference to nisin. Int. J. Food Microbiol. 60: 153-161.
Henderson, J. T., Chopko, A. L. and van Wassenaar, P. D. (1992) Purification and primary structure of pediocin-PA-1 product by Pediococcus acidilactici PAC 1.0. Arch. Biochem. Biophys. 295: 5-12.
Henning, S., Metz, R. and Hammes, W. P. (1986) Studies on the mode of action of nisin. Int. J. Food Microbiol. 3: 121-134.
Herbin, S., Mathieu, F., Brule, F., Branlant, C., Lefebvre, G. and Lebrihi, A. (1997) Characteristics and genetic determinants of bacteriocin activities produced by Carnobacterium piscicola CP5 isolated from cheese. Curr. Microbiol. 35(6): 319-326.
Herranz, C., Chen, Y., Chung, H. J., Cintas, L, M., Hernandez, P. E, Montville, T. J. and Chikindas, M. L. (2001a) Enterocin P selectively dissipates the membrane potential of Enterococcus faecium T136. Appl. Environ. Microbiol. 67(4): 1689-1692.
Herranz, C., Cintas, L. M. Hernández, P. E. Moll, G. N. and Driessen, A. J. M. (2001b) Enterocin P causes potassium ion efflux from Enterococcus faecium T136 cell. Antimicro. agents and Chemothera. 45(3): 901-904.
Hille, M., Kies, S., Gotz, F. and Peschel, A. (2001) Dual role of GdmH in producer immunity and secretion of the staphylococcal lantibiotics gallidermin and epidermin. Appl. Environ. Microbiol. 67(3): 1380-1383.
Hoefnagel, M. H. N., Starrenburg, M. J. C., Martens, D. E., Hugenholtz, M., Swam, I. I. V., Bongers, R., Westerhoff, H. V. and Snoep, J. L. (2002) Metabolic engineering of lactic acid bacteria, the combined approach: Kinetic modelling, metabolic control and experimental analysis. Microbiology 148:1003-1013.
Hoffman, K. L., Han, I. Y. and Damson, P. L. (2001) Antimicrobial effects of corn zein films impregnated with nisin, lauric acid, and EDTA. J. Food Prot. 64(6): 885-889.
Holck, A., axelsson, L., birkeland, S. E., Aukrust, T. and Blom, H. (1992) Purification and amino acid sequence of sakacin A, a bacteriocin from Lactobacillus sake Lb706. J. Gen. Microbiol. 138: 2715-2000.
Holo, H., Jeknic, Z., Daeschel, M., Stevanovic, S. and Nes, I. F. (2001) Plantaricin W from Lactobacillus plantarum belongs to a new family of two-peptide lantibiotics. Microbiology 147(3): 643-651.
Horn, N., Martinez, M. I., Martinez, J. M., Hernandez, P. E., Gasson, M. J., Rodriguez, J. M. and Dodd, H. M. (1998) Production of pediocin PA-1 by Lactococcus lactis using the lactococcin A secretory apparatus. Appl. Environ. Microbiol. 64(3): 818-823.
Horn, N., Martínez, M. I., Martínez, J. M., Hernández, P. E., Gasson, M. J., Rodríguez, J. M. and Dodd, H. M. (1999) Enhanced production of pediocin PA-1 and coproduction of nisin and pediocin PA-1 by Lactococcus lactis. Appl. Environ. Microbiol. 65(10): 4443-4450.
Hoyles, L., Lawson, P. A., Foster, G., Falsen, E., Ohlen, M., Grainger, J. M, and Collins, M. D. (2000) Vagococcus fessus sp. nov., isolated from a seal and a harbour porpoise. Int. J. Syst. Evol. Microbiol. 50(3): 1151-1154.
http://google.fda.gov/search (2003)
http://www.cdfa.ca.gov/dairy/pdf/BulkMilkMarketingGuide.pdf (2003).
http://www.ilovecheese.com/cheeses.asp?Search=D-K (2003).
http://www.iwaki-kk.co.jp/bio/defensin.htm (2003).
Huang, J., Lacroix, C. Daba, H. and Simard, R. E. (1996) Pediocin 5 production and pasmid stability during continuous free and immobilized cell cultures of Pediococcus acidilactici UL5. J. Appl. Bacteriol. 80: 635-644.
Hubert, E., Lobos, O., Brevis, P., and Padilla, C. (1998) Note: Purification and characterization of the bacteriocin PsVP-10 produced by Pseudomonas sp. J. Appl. Microbiol. 84(5): 910-913.
Hühne, K., Axelsson, L., Holck, A. and Kröckel, L. (1996) Analysis of the sakacin P gene cluster from Lactobacillus sake Lb674 and its expression in sakacin-negative Lb. sake strains. Microbiology 142 (6): 1437-1448.
Hui, F. M., Zhou, L. and Morrison, D. A. (1995) Competence for genetic transformation in Streptococcus pneumonias: Organization of a regulatory locus with homology to two lactococcin A secretion genes. Gene 153: 25-31.
Hui, L., Leung, K. and Chen, H. M. (2002) The combined effects of antibacterial peptide cecropin A and anti-cancer agents on leukemia cells. Anticancer Res. 22(5): 2811-2816.
Huot, E., Barrena-Gonzalez, C. and Petitdemange, H. (1996) Comparative effectiveness of nisin and bacteriocin J46 at different pH values. Lett. Appl. Microbiol. 22(1): 76-79.
Hur, J. W., Hyun, T. H., Pyun, Y. R., Kim, T. S., Yeo, I. H. and Paik, H. D. (2000) Identification and partial characterization of lacticin BH5, a bacteriocin produced by Lactococcus lactis BH5 isolated from kimchi. J. Food Prot. 63(12): 1707-1712.
Hurst, A. (1981) Nisin. Adv. Appl. Microbiol. 27: 85-123.
Ingham, A., Ford, M., Moore, R. J. and Tizard, M. (2003) The bacteriocin piscicolin 126 retains antilisterial activity in vivo. J. Antimicrob. Chemother. 51(6): 1365-1371.
Ita, P. S., and Hutkins, R. W. (1991) Intracellular pH and survival of Listeria monocytognes Scott A in tryptic soy broth containing acetic, lactic, citric, and hydrochloric acids. J. Food Prot. 54(1): 15-19.
Ito, A., Sato, Y., Kudo, S., Sato, S., Nakajima, H. and Toba, T. (2003) The screening of hydrogen peroxide-producing lactic acid bacteria and their application to inactivating psychrotrophic food-borne pathogens. Cur. Microbiol. 47(3): 231-236.
Jack, R. W., Tagg, J. R. and Ray, B. (1995) Bacteriocins of Gram-positive bacteria. Microbiol. Rev. 59(2): 171-200.
Jack, R. W., Wan, J., Gordon, J., Harmark, K., Davidson, B. E., Hillier, A. J., Wettenhall, R. E., Hickey, M. W. and Coventry, M. J. (1996) Characterization of the chemical and antimicrobial properties of piscicolin 126, a bacteriocin produced by Carnobacterium piscicola JG126. Appl. Environ. Microbiol. 62(8): 2897-2903.
Janes, M. E., Nannapaneni, R. and Johnson, M. G. (1999) Identification and characterization of two bacteriocin-producing bacteria isolated from garlic and ginger root. J. Food Prot. 62(8): 899-904.
Jang, J., Kim, B., Lee, J., Kim, J., Jeong, G. and Han, H. (2002) Identification of Weissella species by the genus-specific amplified ribosomal DNA restriction analysis. FEMS Microbiol Lett. 212(1): 29-34.
Janssen, P. H., Evers, S., Rainey, F. A., Weiss, N., Ludwig, W., Harfoot, C. G. and Schink, B. (1995) Lactosphaera gen. nov., a new genus of lactic acid bacteria, and transfer of Ruminococcus pasteurii Schink 1984 to Lactosphaera pasteurii comb. nov. Int. J. Syst. Bacteriol. 45(3): 565-571.
Jay, J. M. (2000) Modern Food Microbiol. 6nd Ed. Apac Publishers. Las Vegas, Nevada. pp. 269-271.
Jennes, W., Dicks, L. M. and Verwoerd, D. J. (2000) Enterocin 012, a bacteriocin produced by Enterococcus gallinarum isolated from the intestinal tract of ostrich. J. Appl. Microbiol. 88(2): 349-357.
Jimenez-Diaz, R., Ruiz-Barba, J. L., Cathcart, D. P., Holo, H., Nes, I. F, Sletten, K. H. and Warner, P. J. (1995) Purification and partial amino acid sequence of plantaricin S, a bacteriocin produced by Lactobacillus plantarum LPCO10, the activity of which depends on the complementary action of two peptides. Appl. Environ. Microbiol. 12: 4459-4463.
Joerger, M. C. and Klaenhammer, T. R. (1986) Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J. Bacteriol. 167(2):439-446.
Johnsen, L., Fimland, G., Eijsink, V. and Nissen-Meyer, J. (2000) Engineering increased stability in the antimicrobial peptide pediocin PA-1. Appl. Environ. Microbiol. 66(11): 4798-4802.
Jung, M. Y. and Pail, H. D. (2000) Identification and partial characterization of lacticin JW3, a bacteriocin produced by Lactococcus lactis JW3 isolated from commercial Swiss cheese products. Food Sci. Biotechnol. 9(2): 116-123.
Kabadjova, P., Dousset, X., Le Cam, V. and Prevost, H. (2002) Differentiation of closely related Carnobacterium food isolates based on 16S-23S ribosomal DNA intergenic spacer region polymorphism. Appl. Environ. Microbiol. 68(11): 5358-5366.
Kaiser, A. L. and Montville, T. J. (1996) Purification of the bacteriocin bavaricin MN and characterization of its mode of action against Listeria monocytogenes Scott A cells and lipid vesicles. Appl. Environ. Microbiol. 62(12): 4529-4535.
Kalchayanand, N., Frethem, C., Dunne, A. S. and Ray, B. (2002) Hydrostatic pressure and bacteriocin-triggered cell well lysis of Leuconostoc mestenteroides. Innvo. Food Sci. Technol. 3: 33-40.
Kalchayanand, N., Sikes, A., Dunne, C. P. and Ray, B. (1998) Interaction of hydrostatic pressure, time and temperature of pressurization and pediocin AcH on inactivation of foodborne bacteria. J. Food Prot. 61(4): 425-431.
Katla, T., Møretrø, T., Sveen, I., Aasen, I. M., Axelsson, L., Rørvik, L. M. and Naterstad, K. (2002) Inhibition of Listeria monocytogenes in chicken cold cuts by addition of sakacin P and sakacin P-producing Lactobacillus sakei. J. Appl. Microbiol. 93(2): 191-196.
Katla, T., Naterstad, K., Vancanneyt, M., Swings, J. and Axelsson, L. (2003) Differences in susceptibility of Listeria monocytogenes strains to sakacin P, sakacin A, pediocin PA-1, and nisin. Appl. Environ. Microbiol. 69(8): 4431-4437.
Kato, T., Inuzuka, L., Kondo, M. and Matsuda, T. (2001) Growth of nisin-producing lactococci in cooked rice supplemented with soybean extract and its application to inhibition of Bacillus subtilis in rice miso. Biosci. Biotechnol. Biochem. 65(2): 330-337.
Kato, Y., Sakala, R. M., Hayashidani, H., Kiuchi, A., Kaneuchi, C. and Ogawa M. (2000) Lactobacillus algidus sp. nov., a psychrophilic lactic acid bacterium isolated from vacuum-packaged refrigerated beef. Int. J. Syst. Evol. Microbiol. 50(3): 1143-1149.
Kawai, Y., Saitoh, B., Takahashi, O., Kitazawa, H., Saito, T., Nakajima, H. and Itoh, T. (2000) Primary amino acid and DNA sequences of gassericin T, a lactacin F-family bacteriocin produced by Lactobacillus gasseri SBT2055. Biosci. Biotechnol. Biochem. 64(10): 2201-2208.
Kazazic, M., Nissen-Meyer, J. and Fimland, G. (2002) Mutational analysis of the role of charged residues in target-cell binding, potency and specificity of the pediocin-like bacteriocin sakacin P. Microbiology 148(7): 2019-2027.
Kawashima, M., Hanada, N., Hamada, T., Tagami, J. and Senpuku, H. (2003) Real-time interaction of oral streptococci with human salivary components. Oral Microbiol. Immunol. 18(4): 220-225.
Kelly, W. J., Davey, G. P. and Ward, L. J. (1998) Characterization of lactococci isolated from minimally processed fresh fruit and vegetables. Int. J. Food Microbiol. 45(2): 85-92.
Kemperman, R., Kuipers, A., Karsens, H., Nauta, A., Kuipers, O. and Kok, J. (2003) Identification and characterization of two novel clostridial bacteriocins, circularin A and closticin 574. Appl. Environ. Microbiol. 69(3): 1589-1597.
Khojasteh, A. and Murano, E. A. (1996) Inability of heat stress to affect sensitivity of Listeria monocytogenes to pediocin in pork. J. Food Safety 16(3): 201-208.
Kido, Y., Hamakado, T., Yoshida, T., Anno, M., Motoki, Y., Wakamiya, T. and Shiba, T. (1983) Isolation and characterization of ancovenin, a new inhibitor of angiotensin I converting enzyme, produced by actinomycetes. J. Antibiot. (Tokyo). 36(10): 1295-1299.
Kies, S., Vuong, C., Hille, M., Peschel, A., Meyer, C., Gotz, F. and Otto, M. (2003) Control of antimicrobial peptide synthesis by the agr quorum sensing system in Staphylococcus epidermidis: Activity of the lantibiotic epidermin is regulated at the level of precursor peptide processing. Peptides 24(3): 329-338.
Kim, C. H., Ji, G. E. and Ahn, C. (2000a) Purification and molecular characterization of a bacteriocin from Pediococcus sp. KCA1303-10 isolated from fermented flatfish. Food Sci. Biotechnol. 9 (4): 270-276.
Kim, J., Chun, J. and Han, H. U. (2000b) Leuconostoc kimchii sp. nov., a new species from kimchi. Int. J. Syst. Evol. Microbiol. 50(5): 1915-1919.
Kim, T. S., Hur, J. W., Yu, M. A., Cheigh, C. I., Kim, K. N., Hwang, J. K. and Pyun, Y. R. (2003) Antagonism of Helicobacter pylori by bacteriocins of lactic acid bacteria. J. Food. Prot. 66(1): 3-12.
Kim, Y. M., Lee, N. K. Pail, H. D. and Lee, D. S. (2000c) Migration of bacteriocins from bacteriocin-coated film and its antimicrobial activity. Food Sci. Biotechnol. 9(5): 325-329.
Klaenhammer, T. R. (1988) Bacteriocins of lactic acid bacteria. Biochimie 70: 337-349.
Klaenhammer, T. R. (1993) Genetics of bacteriocins produed by lactic acid bcteria. FEMS Microbiol. Rev. 12: 39-86.
Klaenhammer, T., Altermann, E., Arigoni, F., Bolotin, A., Breidt, F., Broadbent, J., Cano, R., Chaillou, S., Deutscher, J., Gasson, M., van de Guchte, M., Guzzo, J., Hartke, A., Hawkins, T., Hols, P., Hutkins, R., Kleerebezem, M., Kok, J., Kuipers, O., Lubbers, M., Maguin, E., McKay, L., Mills, D., Nauta, A., Overbeek, R., Pel, H., Pridmore, D., Saier, M., van Sinderen, D., Sorokin, A., Steele, J., O'Sullivan, D., de Vos, W; Weimer, B., Zagorec, M. and Siezen R. (2002) Discovering lactic acid bacteria by genomics. Antonie Van Leeuwenhoek 82(1-4): 29-58.
Klein, G., Pack, A., Bonaparte, C. and Reuter, G. (1998) Taxonomy and physiology of probiotic lactic acid bacteria. Int. J. Food Microbiol. 41(2): 103-125.
Kobayashi, T., Kimura, B. and Fujii, T. (2000) Differentiation of Tetragenococcus populations occurring in products and manufacturing processes of puffer fish ovaries fermented with rice-bran. Int. J. Food Microbiol. 56(2-3): 211-218.
Krooneman, J., Faber, F., Alderkamp, A. C., Elferink, S. J., Driehuis, F., Cleenwerck, I., Swings, J., Gottschal, J. C. and Vancanneyt, M. (2002) Lactobacillus diolivorans sp. nov., a 1,2-propanediol-degrading bacterium isolated from aerobically stable maize silage. Int. J. Syst. Evol. Microbiol. 52(2): 639-646.
Kuipers, O. P., Rollema, H. S., Yap, G. J., Boot, H., Siezen, R. J. and de Vos, W. M. (1992) Engineering dehydrated amino acid residues in the antimicrobial peptide nisin. J. Biol. Chem. 267: 24340-24346.
Kuleasan, H. and Cakmakci, M. L. (2002) Effect of reuterin produced by Lactobacillus reuteri on the surface of sausages to inhibit the growth of Listeria monocytogenes and Salmonella spp. Nahrung 46(6): 408-410.
Kupke, T. and Götz, F. (1996) Post-translational modifications of lantibiotics. Antonie van Leeuwenhoek 69: 139-150.
Kwak, H. B., Lee, S. W., Lee, D. G., Hahm, K. S., Kim, K. K., Kim, H. H. and Lee, Z. H. (2003) A hybrid peptide derived from cecropin-A and magainin-2 inhibits osteoclast differentiation. Life Sci. 73(8): 993-1005.
Lauková, A. and Czikková, S. (1998) Inhibition effect of enterocin CCM 4231 in the rumen fluid environment. Lett. Appl. Microbiol. 26(3): 215-218.
Lauková, A. and Czikková, S. (1999) The use of enterocin CCM 4231 in soy milk to control the growth of Listeria monocytogenes and Staphylococcus aureus. J. Appl. Microbiol. 87(1): 182-186.
Lauková, A., Czikková, S., Dobransky, T. and Burdova, O. (1999) Inhibition of Listeria monocytogenes and Staphylococcus aureus by enterocin CCM 4231 in milk products. Food Microbiol. 16: 93-99.
Lauková, A., Marenková, M. and Styriak, I. (2003) Inhibitory effect of different enterocins against fecal bacterial isolates. Berl. Munch. Tierarztl. Wochenschr. 116(1-2): 37-40.
Lauková, A., Štyriak, I. and Marenková (2001a) In vitro antagonistic effect of nisin on faecal enterococci and staphylococci. Vet. Med. 46(9-10): 237-240.
Lauková, A., Vlaemynck, G. and Czikkova, S. (2001b) Effect of enterocin CCM 4231 on Listeria monocytogenes in Saint-Paulin cheese. Folia Microbiol. (Praha) 46(2): 157-160.
Lavermicocca, P., Lonigro, S. L., Valerio, F., Evidente, A. and Visconti, A. (2002) Reduction of olive knot disease by a bacteriocin from Pseudomonas syringae pv. ciccaronei. Appl. Environ. Microbiol. 68(3): 1403-1407.
Lawson, P. A., Foster, G., Falsen, E., Ohlen, M. and Collins, M. D. (1999) Vagococcus lutrae sp. nov., isolated from the common otter (Lutra lutra). Int. J. Syst. Bacteriol. 49(3): 1251-1254.
Lazzaro, B. P. and Clark, A. G. (2003) Molecular population genetics of inducible antibacterial peptide genes in Drosophila melanogaster. Mol. Biol. Evol. 20(6): 914-923.
Leal-Sánchez, M. V., Jiménez-Díaz, R., Maldonado-Barragán, A., Garrido-Fernandez, A. and Ruiz-Barba, J. L. (2002) Optimization of bacteriocin production by batch fermentation of Lactobacillus plantarum LPCO10. Appl. Environ. Microbiol. 68(9): 4465-4471.
Lee, J. H., Cho, K. S., Lee, J., Yoo, J., Lee, J. and Chung, J. (2001) Diptericin-like protein: an immune response gene regulated by the anti-bacterial gene induction pathway in Drosophila. Gene 27(2): 233-238.
Lee, J. S., Lee, K. C., Ahn, J. S., Mheen, T. I., Pyun, Y. R. and Park, Y. H. (2002a) Weissella koreensis sp. nov., isolated from kimchi. Int. J. Syst. Evol. Microbiol. 52(4): 1257-1261.
Lee, S. S., Hsu, J. T., Mantovani, H. C. and Russell, J. B. (2002b) The effect of bovicin HC5, a bacteriocin from Streptococcus bovis HC5, on ruminal methane production in vitro. FEMS Microbiol. Lett. 217(1): 51-55.
Lequin, O., Bruston, F., Convert, O., Chassaing, G. and Nicolas, P. (2003) Helical structure of dermaseptin B2 in a membrane-mimetic environment. Biochemistry 2(34): 10311-10323.
Leroy, F. and De Vuyst, L. (2002) Bacteriocin production by Enterococcus faecium RZS C5 is cell density limited and occurs in the very early growth phase. Int. J. Food Microbiol. 72(1-2): 155-164.
Leroy, F. and De Vuyst, L. (1999a) Temperature and pH conditions that prevail during fermentation of sausages are optimal for production of the antilisterial bacteriocin sakacin K. Appl. Environ. Microbiol. 65(3): 974-981.
Leroy, F. and De Vuyst, L. (1999b) Th
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 杜淑貞(1985)。低年級「提早寫作」教學法探討。國教園地,15,6-11。
2. 江惜美(1997)。國小低年級編序作文教學探究。國教月刊,44︰1-2,40 - 45。
3. 江惜美(1995)。國小編序作文探究。北市師院語文學刊,2,147-165。
4. 江惜美(1992)。國小低年級作文教學法論析。國教月刊,39︰3-4,12-18。
5. 杜淑貞(2002)。低年級提早寫作的理論與實務。中國語文,535,63-70。
6. 林于弘(2003)。九年一貫國語第一冊習作題型分析研究。國教世紀,205 , 頁41-48。
7. 林繼生(2001)。新的開始,新的震撼──國中基本學力測驗第一次測驗國文科試題分析。國文天地,188,83-90。
8. 張民杰(1997)。中小學教科書供應制度之探討。研習資訊,14︰3,25-32。
9. 張清發(2004)。國語第八冊習作題型分析探討──以南一版和康軒版為例。人文及社會學科教學通訊,14:5 ,62-80。
10. 黃秀金(2005)。淺談看圖作文題型研究之一。中國語文,96︰5,84-87。
11. 黃政傑(1997)。中小學教科書的審查與選用。教師天地,88,22-31。
12. 楊鴻銘(2001)。看圖作文與看圖構思的方法。中國語文,533,29-35。
13. 蔡宗陽(1995)。階梯式作文教學法。教師天地,79,49-53。
14. 趙鏡中(2002)。解除教科書的魔咒──對教材編製與選用的探討。研習資訊,19︰3,20-25。
15. 鄭文星(1994)。兒童提早寫作之探討。國教園地,50,73-77。
 
系統版面圖檔 系統版面圖檔