跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/19 03:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張雅富
研究生(外文):Ya-Fu Chang
論文名稱:吳郭魚肌肉中蘋果酸酶之純化與特性
論文名稱(外文):Purification and Characterization of Malic Enzyme from Tilapia Muscle
指導教授:童本興
指導教授(外文):Pen-Hsing Tung
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:93
中文關鍵詞:純化蘋果酸酶吳郭魚
外文關鍵詞:purificationmalic enzymetilapia
相關次數:
  • 被引用被引用:0
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要

吳郭魚肌肉中有一種對NADP+輔酶具有特異性的蘋果酸酶存在。經55~75%飽和硫酸銨分化,DE-52離子交換層析、2’5’-ADP-Sepharose 4B親和性層析以及Sephacryl S-300H膠過濾等純化步驟後,可將其纯化。此蘋果酸酶以L-malic acid 和D-malic acid為基質,相對活性分別為100%以及6 %。以Native-PAGE求得分子量為230kDa,具有四個次單元,次單元分子量為56 kDa。蘋果酸酶的最適酸鹼值為7.8,在酸性環境下較不安定。在酸鹼值為7.8時,氧化蘋果酸的最適溫度為50℃;但在45℃,儲存30分鐘後會失去67%之活性。對蘋果酸及NADP+之最大反應速率(Vmax)分別為32.36、23.04 μmol NADPH/min,Km值分別為0.26、0.0069 mM;此酵素活化能為10.66 cal/mole。蘋果酸酶可以被Zn2+、Hg2+、Al3+、Fe2+、Co2+、Cd2+等離子所抑制;也會被iodoacetic acid、NBS等所抑制,顯示SH基可能影響活性中心反應,此外一些類黃酮物質(rutin、morin)亦會抑制蘋果酸酶之活性。
Abstract

Malic enzyme (L-malate: NADP+-oxidooreductase(oxaloacetate decaboxylating), EC 1.1.1.40) has been purified from tilapia muscle over 1880-folds by ammonium sulfate fractionation, DE-52 ion exchange chromatography, 2’,5’ ADP-Sepharose 4B affinity chromato-graphy, and Sephacryl S-300HR gel filtration chromatography. The enzyme requires a coenzyme, NADP+, and catalyzes the decarboxylation of L-malic acid or D-malic acid. Its relative activities towards L-malic acid and D-malic acid were 100% and 6%, respectively. Molecular weight of the malic enzyme determinated by Native-PAGE method was 230 kDa. The enzyme consisted of four identical subunits with molecular weight of 56 kDa. The optimum pH for L-malic acid decarboxylation was found to be 7.8. In acidic pH, the enzyme was unstable. It’s optimum temperature was 50℃, and lost activity gradually at temperature higher than 35℃. Vmax for L-malic acid and NADP+ were 32.36、23.04 μmol NADPH/min, Km for L-malic acid and NADP+ were 0.26、0.0069 mM, respectively. The enzyme was inhibited by Zn2+、Hg2+、Al3+、Fe2+、Co2+、Cd2+. It was also inhibited by iodoacetic acid, suggesting presence of free sulfhydryl group near by the active site. Some kinds of flavonoid (rutin and morin) also inhibited malic enzyme activity.
目錄
頁次
中文摘要.................................................... 1
英文摘要.................................................... 2
壹、前言..................................................... 3
貳、文獻整理................................................. 5
一、蘋果酸酶的發現、分類與分佈............................ 5
二、蘋果酸酶的生理機制與調控............................. 6
三、蘋果酸酶的特性....................................... 10
1.生化特性.......................................... 10
2.結構上的研究...................................... 12
四、魚類對碳水化合物之利用情形........................... 14
1.胰島素方面........................................ 15
2.糖解酵素.......................................... 16
五、魚體內脂肪酸的合成.................................. 17
參、材料與方法............................................... 18
1.實驗材料.......................................... 18
2.藥品與儀器........................................ 18
3.緩衝溶液.......................................... 20
4.蘋果酸酶性測定法.................................. 22
5.活性單位.......................................... 22
6.蛋白質的定量...................................... 22
7.粗酵素液的製備.................................... 23
8.飽和硫酸銨分劃.................................... 23
9.DE-52 離子交換樹脂層析法......................... 24
10.2’,5’ ADP-Sepharose 4B 親和性層析法................ 25
11.Sephacry S-300 HR膠過濾層析法..................... 26
12.純度的鑑定....................................... 26
13.活性染色法....................................... 28
14.分子量的鑑定..................................... 29
15.次單元的鑑定..................................... 31
16.酵素動力學常數Km及Vmax的決定.................. 33
17.基質特異性....................................... 33
18.最適酸鹼度....................................... 33
19.酸鹼度的安定性................................... 34
20.最適溫度......................................... 34
21.活化能的決定..................................... 34
22.熱安定性......................................... 35
23.金屬離子的影響................................... 35
24.抑制劑的影響..................................... 36
25.核苷酸的影響..................................... 36
肆、結果.................................................... 37
一、酵素的純化.......................................... 37
1.粗酵素液.......................................... 37
2.硫酸銨分劃........................................ 37
3.DE-52離子交換樹脂管柱層析........................ 38
4.2’,5’-ADP Sepharose 4B親和性管柱層析................ 39
5.Sephacryl S-300HR膠過濾層析....................... 39
二、蘋果酸酶的均質度.................................... 40
三、蘋果酸酶的生化特性.................................. 40
1.分子量............................................ 40
1.1不連續膠體電泳法................................ 41
1.2膠過濾層析法.................................... 41
1.3次單元的鑑定.................................... 41
2.酵素動力學常數Km與Vmax的決定.................... 42
3.基質特異性......................................... 43
4.最適酸鹼度......................................... 43
5.酸鹼度的安定性..................................... 43
6.最適溫度........................................... 44
7.活化能的決定....................................... 44
8.熱安定性........................................... 44
9.金屬離子之影響..................................... 44
10.抑制劑的影響...................................... 45
11.核苷酸的影響...................................... 45
伍、討論..................................................... 46
一、純化過程............................................. 46
二、生化特性............................................. 46
1.純度之鑑定........................................ 46
........2.分子量及次單元.................................... 47
........3.酵素動力學常數Km及Vmax......................... 48
........4.基質特異性........................................ 51
........5.最適酸鹼度與酸鹼安定性............................ 51
........6.最適溫度,熱安定性與活化能......................... 52
........7.金屬離子與抑制劑.................................. 53
8.核苷酸的影響...................................... 54
陸、參考文獻................................................. 56
圖表
圖1. ....................................................... 67
圖2. ....................................................... 68
圖3. ....................................................... 69
圖4. ....................................................... 70
圖5. ....................................................... 71
圖6. ....................................................... 72
圖7. ....................................................... 73
圖8. ....................................................... 74
圖9. ....................................................... 75
圖10. ...................................................... 76
圖11. ...................................................... 77
圖12. ...................................................... 78
圖13. ...................................................... 79
圖14. ...................................................... 80
圖15. ...................................................... 81
圖16. ...................................................... 82
圖17. ...................................................... 83
表1. ....................................................... 84
表2. ....................................................... 85
表3. ....................................................... 86
表4. ....................................................... 87
表5. ....................................................... 88
表6. ....................................................... 89
陸、參考文獻
Adams, K. A. and Davis A. J. (2001) Dietary protein concernation regulates the mRNA expression of chicken hepatic malic enzyme. J. Nutr. 131: 2269-2274.
Ahvazi B. Coulombe R. Delarge M. Vedadi M. Zhang L. Meighen E. Vrielink A. (2000) Crystal structure of the NADP+-dependent aldehyde dehydrogenase
Anderson, J., Jackson, A. J. and Capper, B. S. (1984) Effects of dietary carbohydrate and fibre on the tilapia oreochromis niloticus (Linn.). Aquacul. 37: 303-314.
Aster, P. and Moon, T. W. (1980) Influence of fasting and diet on lipogenic enzymes in the American eel, Anguilla rostrata LeSueur. J. Nutr., 111: 346-354.
Baker, P. J., Thomas, D. H., Barton, C. H., Rice, D. W. and Bailey, E. (1987) Crystallization of a NADP+-dependent malic enzyme from rat liver. J. Mol. Biol. 193: 233-235.
Barroso, J. B., Peragon, J, Garcia-Salguero, L., de la Higuera, M., Lupianez, J. A. (2001) Carbohydrate deprivation reduces NADPH-production in fish liver but not in adipose tissue. Int. J. Biochem. Cell Biol. 33: 785-796.
Barroso, J. B., Peragon, J., Contreras-Jurado, C., Garcia-Salguero, L., Corpas, F. J., Esteban, F. J., Peinado, M. A., de la Higuera, M., Lupianez, J. A.. (1998) Impact of starvation-refeeding on the kinetics and protein expression of trout liver NADPH-production systems. Am. J. Physiol. 274: R1578-R1587.
Bellamacina, C. R., Brown, M. L., Sul, H. S., and Robin, C. S. (1987) Structure and expression of murine malic enzyme mRNA. J. Biol. Chem. 262:1558-1565,.
Bergot, F. (1979) Carbohydrate in rainbow trout diets: effects of the level and source of carbohydrate and the number of meals on growth and body composition. Aquacul.: 157-167.
Biegniewska, A and Skorkwski, E. F. (1987) Mitochondrial NADP-dependent malic enzyme of cod heart. Rate of forward and reverse reaction. Comp. Biochem. Physiol. 86B, 731-735.
Biegniewska, A. and Skorkwski, E. F. (1986) Some properties of forward and reverse reaction of fish mitochondrial malic enzyme. European Mar. Biol. Symposium, Gdansk, Abstr., p.84.
Brdiczka, D. and Pette, D. (1971) Eur. J. Biochem. 19: 546-551.
Brodelius, P., P-O. Larsson and K. Mosbach (1974) The synthesis of three AMP-analogues : N6-(6-aminohexyl)-adenosine and 5’-monophosphate, N6-(6-aminohezyl)-adenosine 2’,5’-bisphosphate and N6-(6-aminohexyl)-adenosine 3’, 5’-bisphosphate and their application as general ligands in biospecific affinity chromatography. Eur. J. Biochem. 47, 81.
Buhler, D. R. and Halver, J. E. (1961) Nutrition of salmonoid fishes. Ⅸ. Carbohydrate requirements of Chinook salmon.. J. Nutr. 74: 307-308.:
Carugo, O. and Argos, P. (1997) NADP-dependent enzymes. I:conserved stereochemistry of cofactor binding. Proteins 28: 10-28.
Chang, G. G., and Hsu, R. Y. : Mechanism of pigeon liver malic enzyme : modification histidyl residues by ethoxyformic anhydride. Biochem. Biophys. Acta 483: 228-235, 1977.
Chang, G. G. and Huang, T. M. (1980) : Involvement of tyrosyl residues in the substrate binding of pigeon liver malic enzyme. Biochem. Biophys. Acta 611: 217-226.
Chang, G. G. Chang, T. C. and Huang, T. M. (1982) : Invovlvement of lysine residues in the nucleotide binding of pigeon liver malic enzyme. Int. J. Biochem. 14: 621-627.
Chang, G. G., Huang, T. M. and Chang, T. C. (1988) Reversible dissociation of the catalytically active subunits of pigeon liver the replication of the malic enzyme. Biochem. J. 254: 123-130.
Chou, B. S. and Shiau S. Y. (1996) Optimal dietary lipid level for growth of junvenile hybrid tilapia, Oreochromis niloticus x Oreochromis aureus. Aquaculture. 143: 185-195.
Chou, W. Y., Chang, H. P., Huang, C. H., Kuo, C. C., Tong, L., and Chang, G. G. : Characterization of the functional role of Asp141, Asp194, and Asp464 residue in Mn2+-L-malate binding of pigeon liver malic enzyme. Protein Sci. 9: 242-251, 2000.
Clancy, L. L., et al. and Einspahr, H. M. (1992) Crystallization of the NAD-dependent malic enzyme from the parasitic nematode Ascarissuum. J. Mol. Biol. 226: 565-569.
Dozin, B., Magnuson, M. A. and Nikodem, V. M. (1986) Thyroid hormone regulation of malic enzyme synthesis. J. Biol. Chem. 261:10290-10292.
Edwards, D. J., Austreng, E., Risa, S. and Gjedrem, T. (1977) Carbohydrate in rainbow trout diets. I. Growth of fish of different families fed diets containing different proportions of carbohydrate. Aquacul. 11:31-38.
From Vibrio harveyi: structural implications for cofactor specificity and affinity. Biochem. J. 349: 853-861.
Furuichi, M. and Yone, Y. (1980) Effect of dietary dextrin levels on growth and feed efficiency, and chemical composition of liver and dorsal muscle, and the absorption of dietary protein and dextrin in fishes. Bull. Jpn. Soc. Sci. Fish. 46: 225-229.
Furuichi, M. and Yone, Y. (1981) change of blood sugar and plasma insulin levels of fishes in glucose tolerance test. Bull. Jpn. Soc. Sci. Fish 47:761-764.
Furuichi, M. and Yone, Y. (1982) Changes in activities of hepatic enzymes related tto carbohydrate metabolism of fishes in glucose and insulin-glucose tolerance tests. Bull. Jpn. Soc. Sci. Fish. 48: 463-466.
Fynn-Ailins, K., Hung, S. S. O., Lin, W. and Li, H. (1992) Growth, lipogenesis and liver composition of juvenile white sturgeon fed different levels of D-glucose. Aquaculture 105: 455-463.
Garcia-Jimenez, C., Hernandez, A., Obregon, M. J., Santisteban, P. (1993) Malic enzyme gene expression in differentiating brown adipocytes: regulation byinsulin and triiodothyronine. Endocrinology 132: 1537-1543.
Goodridge, A. G. (1968) Citrate-cleavage enzyme, malic enzyme and certain dehydrogenases in embryonic and growing chicks. Biochem. J. 108: 663-666.
Goodridge, A. G. (1994) Nutritional regulation of gene expression, in: M.A. Shils et al. (Eds.), Modern Nutrition in Health and Disease, Lea and Febiger, Philiadelphia, pp. 489-500.
Goodridge, A. G. and Adelman, T. G. (1976) Regulation of malic enzyme sythesis by insulin triiodothyronine, and glucagons in liver cells in culture. J. Biol. Chem. 251: 3027-3032.
Hillgartner, F. B. and Charron, T. (1998) Glucose stimulates transcription of fatty acid synthase and malic enzyme in avian hepatocytes. Am. J. Physiol. 274, E493-E501.
Hillgartner, F. B., Salati, L. M. and Goodridge, A. G. (1995) Physiological and molecular mechanisms involved in nutritional regulation of fatty acid synthesis. Physiol. Rev. 75: 47-76.
Hsu, R. Y., Lardy, H. A. and Clend, W. W. (1967) Pigeon liver malic enzyme. V. Kinecic studies. J. Biol. Chem. 242: 5315-5322.
Hurley, J. H., Dean, A. M., Koshland, D. E., Jr. and Stround, R. M. (1991) Catalytic mechanism of NADP+-dependent isocitrate dehydrogenase: Implications from the structures of magnesium-isocitrate and NADP+ complexs. Biochemistry 30: 8671-8678.
Kim, H. I. and Park, I. K. (1995) Effect of prolonged starvation on the activities of malic enzyme and acetylcholinesterase in tissues of Japanese Quail.
Kobayashi, K., Doi, S., Negoro, S., Urabe, I. and Okada, H. (1989) structure and properties of malic enzyme from Bacillus stearothermophilus. J. Biol. Chem. 264: 3200-3205.
Kuo, C. C., Tsai, L. C., Chin, T. Y., Chang, G. G. and Chou, W. Y. (2000) : Lysine residues 162 and 340 are involved in the catalysis and coenzyme binding of NADP+-dependent malic enzyme from pigeon. Biochem. Biophys. Res. Commun. 270: 821-825.
Li, T., Gracy, R. W. and Harris, B. G. (1972) Studies on enzymes from parasitic helminthes : purification and properties of malic enzyme from the Tapewore, Hymenolepis diminuta. Arch. Biochem. Biophys. 150: 397-403.
Likimani, T. A. and Wilson, R. P. (1982) Effects of diet on lipogenic enzyme activities in channel catfish hepatic and adipose tissue. J. Nutr., 112: 112-117.
Lin, H., Romsos, D. R., Tack, P. E. and Leveille, G. A. (1977a) Influence of dietary lipid on lipogenuc enzyme activities in coho salmon, Oncorhynchus kisutch (Walbaum). J. Nutr., 107: 846-854.
London, J., Meyer, E. Y. (1969) Malate utilization by a group D Stretococcus faecalis and Lactobacillus casei by immunological studies with two forms of malic enzyme. J. Bacteriolog. 108: 196-201.
Ma, X. J., Salati, L. M., Ash, S. E., Mitchell, D. A., Klautky, S. A., Fantozzi, D. A. and Goodridge, A. G. (1990) Nutritional regulation and tissue-specific expression of the malic enzymegene in the chicken. Transcriptional control and chromatin structure. J. Biol. Chem. 265: 18435-18441.
Mariash, C. N., Kaiser, F. E., Schwartz, H. L., Towle, H. C. and Oppenheimer, J. H. (1980) Synergism of thyroid hormone and high carbohydrate diet in the induction of lipogenic enzymes in the rat. J. Clin. Invest. 65: 1126-1134.
McCartney, T. H. (1971) The comparative utilization of glucose, fructose, and galactose by fingerling brook trout. Fish Res. Bull.
Morita, K., Furuichi, M. and Yone. (1982) Effect of carboxymethyl-cellulose supplemented to dextrin-containing diets on the growth and feed efficiency of red sea breams. Bull. Japan. Soc. Sci. Fish. 48: 1617-1620.
Moulder, J. W., Vennesland, B. and Evans, E. A., Jr. (1945) A study of enzymic reactions catalyzed by pigeon liver extracts. J. Biol. Chem. 160: 305-325
Ochoa, S., Mehler, A. H. and Kornberg, A. (1947) Reversible oxidative decarboxylation of malic acid. J. Biol. Chem. 167: 871-872.
Pairoba, C. F., Colombo, S. L. and Andreo, C. S. (1996) Flavonids as inhibitors of NADP-malic enzyme and PEP carboxylase from C4 plants. Biosci. Biotech. Biochem. 60(5):779-783.
Palmer, T.N. and Ryman, B. E. (1972) Studies on oral glucose tolerance in fish. J. Fish. Biiol. 4: 311-319.
Pederson, P. L. (1978) Tumor mitochondria and the bioenergetic of caner cells. Progr. Exp. Tumor Res. 22: 190-274.
Perozich J. Kuo I. Wang BC. Boesch JS. Lindahl R. Hempel J. (2000) Shifting the NAD/NADP preference in class 3 aldehyde dehydrogenase. Euro J. Biochem. 267: 6197-6203.
Petersen, T. D., Hochachka, P. W. and Suarez, R. K. (1987) Hormonal control of gluconeogenesis in rainbow trout hepatocytes. Regulatory role of pyruvate kinase. J. Exp. Zool. 243: 173-180.
Petty, K. J., Desvergne, B., Mitsuhashi, T. and Nikodem, V. M. (1990) indentification of a thyroid hormone response element in the malic enzyme gene. J. Biol. Chem. 265: 7395-7400.
Philips, A. M., Jr., Tunison, A. V. and Brockway, D. R. (1948) The utilization of carbohydrates by trout. Fish. Res. Bull. 11: 8-14.
Refstie, T. and Austreng, E. (1981) Carbohydrate in rainbow trout diets.Ⅲ. Growth and chemical composition of fish from different families fed four levels of carbohydrate in the diet. Aquacul. 25: 35-49.
Roncero, C. and Goodridge, A. G. (1992) Hexanoate and octanoate inhibit transcription of the malic enzyme and fatty acid synthase genes in chick embryo hepatocytes in culture. J. Biol. Chem. 267: 14918-14927.
Rosebrough, R. W., Mitchell, A. D. and Mcmurtry, J. P. (1996) Dietary crude protein changes rapidly alter metabolism and plasma insulin-like growth factor I concentrations in broiler chickens. J. Nutr. 126: 2888-2898.
Rutter, W. and Lardy, H. A. (1958) Purification and properties of pigeon liver malic enzyme. J. Biol. Chem. 233: 374.
Salati, L. M., Ma, X. J., McCormick, C. C., Stapleton, S. R. and Goodridge, A. G. (1991) Triiodothyronine stimulates and cyclic AMP inhibits transcription of the gene for malic enzyme in chick embryo hepatocytes in culture. J. Biol. Chem. 266: 4010-4016.
Sanz, N., Diez-Fernandez, C., Valverde, A. M., Lorenzo, M., Benito, M. and Cascales, M. (1997) Malic enzyme and glucose 6-phosphate dehydrogenase gene expression increases in rat liver cirrhogenesis. Br. J. Cancer. 75: 487-492.
Schimerlik, M. I. and Cleland, W. W. (1997) : pH variation of the kinetic parameters and the catalytic mechanism of malic enzyme. Biochemstry 16: 576-583.
Shimeno, S. Kheyyali, D. and Takeda, M. (1990) Metabolic adaptation to prolonged starvation in carp. Nippon Suisan Gakkaishi. 56: 35-41.
Shimeno, S. Takeda, M.,Takayman, S., Fukui, A., Sasaki, H. and Kajiyama, H. (1981) Adaptation of hepatopancreatic enzymes to dietary carbohydrates in carp. Bull. Jpn. Soc. Sci. Fish. 47: 71-77.
Stumpf, P. A., Parks, J. K., Eguren, L. A. and Haas, R. (1982) Friedreich ataxia:Ⅲ. Mitochondrial malic enzyme deficiency. Neurology 32, 221-227.
Suarez, R. K. and Mommsen, T. P. (1987) Gluconeogenesis in teleost fishes. J. Can. Zool. 65: 1869-1882.
Sunny, F. Lakshmy, P. S. and Oommen, O. V. (2002) Rapid action of cortisol and testosterone on lipogenic enzymes in a fresh water Oreochromis mossambicus: short- term in vivo and in vitro study. Comp. Bioch. Phys. Part B.131: 297-304.
Tarr, H. L. A. (1972) Enzymes and systems of intermediary metabolism. In Fish Nutrition (Edited By J. E. Halver). Pp.255-326, Academic Press, New York.
Tung, P.H. and Shiau, S. Y. (1991)Effects of meal frequency on gowth performance of hybride tilapia, Oreochromis niloticus X O. aureus, fed different carbohydrate diets. Aquacul. 92: 343-350.
Wakil, S. J., Stoops, J. K. and Joski, V. C. (1983) Fatty acid synthesis and its regulation. Ann. Rev. Biochem. 42: 537-579.
Wang, Y., Yin, L. and Hillgartner, F. B. (2001) The homeodomain proteins PBX and MEIS1 are accessory factors that enhance thyroid hormone regulation of the malic enzyme gene in hepatocytes. J. Biol. Chem. 276: 23838-23848.
Wang, Y., Zhang, Y. and Bradley Hillgartner, F. (2002) Chicken ovalbumin upstream-promoter transcription factor and E-box-binding proteins enhance thyroid-hormone responsiveness of the malic enzyme gene in avian hepatocytes. Biochem. J. 361: 391-400.
Wedding, R.T. (1989) Malic enzyme of higher plants; characteristics, regulation and physiological function. Plant Physiol. 90: 367-371.
Wei, C. H., Chou, W. Y., and Chang, G. G. (1995) : Identification of Asp258 as the metal coorinate of pigeon liver malic enzyme by site-specific mutagenesis. Biochemistry 3: 7931-7954.
Wei, C. H., Chou, W. Y., Huang, S. M., and Chang, C. C. (1994) : Affinity cleavage at the putative metal binding sites of pigeon liver malic enzyme by the Fe2+-ascorbate system. Biochemistry 34: 7949-7954.
Wilson, R. P. and Poe, W. E. (1987) Apparent inability of chability of channel catfish to utilize dietary mono- and di- saccharide as energy source. J. Nutr. 117:280-285.
Xu, Y. W., Bhargava, G., Wu, H., Loeber, G. and Tong, L. (1999) Crystal structure of human mitochondrial NAD(P)+-dependent malic enzyme: a new class of oxidative decarboxylases. Structure 7: 877-889.
Yang Z. Floyd DL. Loeber G. Tong L. (2000) Structure of a closed form of human malic enzyme and implications for catalytic mechanism. Nature. Structural Biology. 7: 251-257.
Yang, Z., Zhang, H., Hung, H. C.,Kuo, C. C.,Tsai, L. C., Yuan, H. S., Chou W. Y., Chang, G. G. and Tong, L. (2002) Structural studies of the pigeon cytosolic NADP+-dependent malic enzyme: a new of oxidative decarboxylases. Structure. 7: 877-889.
Zelewski, M. and Swierczynski, J. (1991) Malic enzyme in human liver. Intracellular distribution, purification and properties of cytosolic isozyme. Eur. J. Biochem. 201: 339-345.
Zflewski, M., and Swierczynski, J. (1991) Malic enzyme in human liver. Intracellular distribulation, purification and properties of cytosolic enzyme. Eur. J. Biochem. 201: 339-345.
Zhang L. Ahvazi B. Szittner R. Vrielink A. Meighen E. (1999) Change of nucleotide specificity and enhancement of catalytic efficiency in single point mutants of Vibrio harveyi aldehyde dehydrogenase. 38: 11440-11447.
周本善 (1997) 吳郭魚稚魚脂質需求之探討。國立台灣海洋大學水產食品科學系碩士學位論文。
張睦群 (1998) 吳郭魚肝臟中蘋果酸酶之純化與特性。國立台灣海洋大學水產食品科學系碩士學位論文。
徐智鍵 (1997) 開英種鳳梨果實NADP+-蘋果酸酵素之生化特性研究。國立中興大學植物學研究所碩士論文。
王正康 (1990) 人體乳癌細胞胞漿蘋果酸酶之純化及性質鑑定。國防醫學院生物化學研究所碩士論文。
童本興 (1993) 吳郭魚對碳水化合物的利用。國立海洋大學水產食品科學研究所博士論文。
謝淑玲 (1996) 吳郭魚在飢餓狀態及回復餵食後對碳水化合物利用性之探討。國立台灣海洋大學水產食品科學系碩士學位論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top