跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/02 15:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳臺榕
研究生(外文):Tai-Jung Chen
論文名稱:發酵牛乳乳清中活性胜肽之分離與鑑定
論文名稱(外文):Isolation and Identification of Bioactive Peptides of Whey from Fermented Milk
指導教授:蔡震壽蔡震壽引用關係
指導教授(外文):Jenn-Shou Tsai
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:95
中文關鍵詞:血管升壓素轉換酶活性胜肽發酵牛乳
外文關鍵詞:Angiotensin I converting enzymeBioactive peptideFermented milk
相關次數:
  • 被引用被引用:3
  • 點閱點閱:430
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
一、中文摘要
以市售脫脂與全脂乳粉為原料,利用兩種混合的乳酸菌AB與不同添加量之蛋白酶(Protease F)於43℃下培養5小時,探討牛乳發酵與水解後之乳清對血管升壓素轉換酶(ACE)的抑制及其調節血壓之生理效果。經AB菌與Protease F發酵與水解5小時者,乳清中之胜肽含量由2.1增加至32.8 mg/ml,且其對ACE之IC50值由0.708降低至0.266 mg/ml。此樣品經15天儲存後,其IC50值可由0.266降低至0.147mg/ml。以膠體層析法(Sephadex G-15)劃分此樣品,可得到五個主要的波峰區域,其中以分子量為534-364 Da與100 Da以下的劃分物對抑制ACE能力最強,其有效抑制百分比(IER)分別為1329與1384 %/ mg/ml。再將此樣品以飲液的形式餵食原發性高血壓老鼠(SHR)八週,於餵食乳清至第四週時SHR的收縮壓即具有明顯的下降。至第八週時SHR的收縮壓平均下降15.9 mmHg。
二、英文摘要

The commercial whole and skim milk powder was fermented with mixed two lactic acid bacteria (AB) and addition of Protease F at 430C for 5 hrs. The effect of whey from lactic acid bacteria fermented milk on Inhibitory activity against angiotensin I-converting enzyme and antihypertensive effect were investigated. When lactic acid bacteria and Protease F was added then fermented 5 hrs, the peptide content of whey increased from 2.1 to 32.8 mg/g and the IC50 value decreased from 0.708 to 0.266 mg/ml. After 15 days to stroage at 80C, the IC50 value decreased from 0.266 to 0.147 mg/ml. The whey was fractionated by gel filtration using Sephadex G-15 column. The fractionated product of peptide with molecular weight 534 - 364 Da and below than 100 Da showed the highest inhibitory efficiency ratio (IER) being 1329 and 1384 %/ mg/ml, respectively. The whey (contained 0.5% (w/v) NaCl) as drinks was administrated to spontaneously hypertensive rat (SHR) for 8 weeks. After 4 weeks oral administration of whey , the systolic blood pressure (SBP) was significantly lower than water group (contained 0.5% (w/v) NaCl) .The average SBP decreased 15.9 mmHg after 8 weeks oral administration.
目 錄
一、中文摘要…………………………………………………… 1
二、英文摘要……………………………………………………...2
三、前言…………………………………………………………...3
四、文獻整理…………………………………………………….. 5
(一)發酵對乳製品成分變化之影響…………………………. 5
1、化學組成……………………………………………………. 5
2、營養性………………………………………………………. 6
3、苦味性………………………………………………………. 6
(1)Aminopeptidase之分類………………………………….. 7
(2)Aminopeptidase之特性………………………………….. 8
(3)苦味之呈味機制…………………………………………. 8
(二)乳製品中活性胜肽之生理活性………………………….. 10
1、免疫調節活性………………………………………………. 10
2、抗血栓活性……………………………...……………….…. 11
3、礦物質結合特性……………………………………………. 11
4、抗菌活性………………………………………………….… 12
5、抗高血壓之作用……………………………………………. 12
6、抑制脂氧合酶之活性………………………………………. 13
(三)高血壓之定義與分類…………………………………….. 13
1、定義…………………………………………………………. 13
2、分類…………………………………………………………. 14
(1)原發性高血壓…………………………………………. 15
(2)續發性高血壓……………………………………….… 15
(四)降血壓藥物的作用原理………………………………….. 16
(五)血管升壓素轉換酶(ACE)之生化特性……………….. 17
1、ACE的生化特性…………………………………………… 17
2、ACE與血壓之關聯性……………………………………… 18
3、ACE的抑制原理……………………………………….….. 19
(六)γ-胺基丁酸之功能特性………………………………... 20
1、γ-胺基丁酸之生合成……………………………………… 21
(1)GABA之生合成與代謝………………………………. 21
(2)GABA受體之功能性…………………………………. 21
2、γ-胺基丁酸之生理功能…………………………………… 23
五、材料與方法………………………………………………….. 24
(一)實驗材料…………………………………………………...24
(二)實驗方法………………………………………………….. 25
1、樣品的製備…………………………………………………. 25
2、可溶性蛋白質含量的測定…………………………………. 25
3、胜肽含量的測定……………………………………………. 25
4、乳清對ACE抑制能力的測定………..……………………. 26
5、IC50值的測定………………………….……………………. 27
6、抑制型態與Ki值測定………………………………….….. 28
7、乳清中主要胜肽的分子量劃分……………………………. 28
8、劃分收集物對ACE抑制活性的測定….………………….. 29
9、劃分收集物中主要胜肽之純化…………..………………... 29
10、胺基酸組成分析…………………………………………... 30
11、胺基酸序列分析………………………………………….. 30
12、動物飲液的製備………………………………………….. 31
13、實驗動物飼養條件及實驗項目………………………….. 31
14、老鼠血壓之測定………………………………………….. 31
15、統計分析………………………………………………….. 32
六、結果與討論….………………………………………………..33
(一)發酵與蛋白酶水解條件對發酵乳性質之影響…………...33
1、可溶性蛋白………………………………………………. 33
2、胜肽含量…………………………………………………. 34
3、分子量分布………………………………………………. 35
(二)乳清對血管升壓素轉換酶(ACE)之抑制及其抑制型態判定…………………………………………………..……. 36
1、抑制血管升壓素轉換酶之IC50值………………………. 36
2、各劃分物對ACE抑制能力的關係………………….….. 37
3、抑制類型與Ki值…………………………………….….. 37
(三)乳清與其劃分物之胺基酸分析………………………..….38
1、牛乳乳清之胺基酸分析…………………………………. 38
2、劃分收集物之胺基酸分析………………….…………… 38
3、γ-aminobutyric acid(GABA)之含量分析……………. 39
(四)乳清之劃分收集物主要胜肽的分離純化………...…… 40
(五)儲存時間對發酵及蛋白酶水解之牛乳乳清理化性質的響…………………………………………………..………. 40
1、pH值……………………………………………………... 40
2、酸度………………………………………………………. 41
3、官能品評…………………………………………………. 41
4、可溶性蛋白………………………………………………. 42
5、胜肽含量…………………………………………………. 42
6、IC50值…………………………………………………….. 43
7、G-15膠體層析…………………………………………… 43
(六)不同糖量的添加對發酵乳乳清胜肽含量與IC50值之影 響…………………………………………………………... 43
1、胜肽含量…………………………………………………. 43
2、IC50值…………………………………………………….. 44
(七)乳清對原發性高血壓老鼠的影響………...……...…… 44
1、心跳速率…………………………………………………. 44
2、收縮壓……………………………………………………. 45
3、舒張壓……………………………………………………. 46
4、收縮壓的增加量…………………………………………. 47
5、體重………………………………………………………. 47
6、飲液及飼料攝取量………………………………………. 47
七、結論…………………………………………………………...49
八、參考文獻…………………………………….………………..50
九、圖……………………………………………………………...61
十、表……………………………………………………………...80


圖 目 錄
一、牛乳經發酵處理後之乳清的膠體層析圖譜………………...61
二、牛乳經發酵處理後之乳清的膠體層析圖譜………………...62
三、發酵牛乳之乳清的膠體層析圖譜…………………………...63
四、發酵牛乳之乳清的抑制型態………………………………...64
五、發酵牛乳經Sephadex G-15過濾後收集波峰A4的高效液相層析圖譜………………………………………………… 65
六、乳清之劃分物A4區中主要波峰(D1)分離的高效液相層析圖譜………………………………………………………... 66
七、乳清之劃分物A4區中主要波峰(D2)分離的高效液相層析圖譜………………………………………………………... 67
八、乳清之劃分物A4區中主要波峰(D3)分離的高效液相層析圖譜………………………………………………………... 68
九、乳清之劃分物A4區中主要波峰(D4)分離的高效液相層析圖譜………………………………………………………... 69
十、乳清之劃分物A4區中主要波峰(D5)分離的高效液相層析圖譜………………………………………………………... 70
十一、發酵牛乳於不同時間儲存後乳清的膠體層析圖譜…….. 71
十二、發酵牛乳於不同時間儲存後乳清的膠體層析圖譜…….. 72
十三、原發性高血壓老鼠於餵食發酵牛乳乳清期間之心跳速率的變化………………………………………………………... 73
十四、原發性高血壓老鼠於餵食發酵牛乳乳清期間之收縮壓的變化…………………………………………………………... 74
十五、原發性高血壓老鼠於餵食發酵牛乳乳清期間之舒張壓的變化…………………………………………………………... 75
十六、原發性高血壓老鼠在餵食發酵牛乳乳清期間之收縮壓增加量變化……………………………………………………... 76
十七、原發性高血壓老鼠在餵食發酵牛乳乳清期間之體重變 化……………………………………………………………... 77
十八、原發性高血壓老鼠在餵予發酵牛乳乳清之每週平均飲液攝取量的變化………………………………………………... 78
十九、原發性高血壓老鼠在餵予發酵牛乳乳清之每週平均飼料攝取量的變化………………………………………………... 79



表 目 錄
一、發酵用牛乳的組成…………………………………………...80
二、發酵牛乳中菌種接種量與培養條件………………………...81
三、乳酸菌種類與蛋白酶的添加量對牛乳乳清之可溶性蛋白與胜肽含量的影響……………………………………………... 82
四、乳酸菌種類與蛋白酶的添加量對牛乳乳清之IC50值的影 響……………………………………………………………... 83
五、發酵牛乳乳清之各劃分收集物與抑制ACE能力的關係…. 84
六、不同抑制劑之ACE之IC50值、Ki值與抑制劑類型……... 85
七、牛乳乳清中胺基酸的變化…………………………………...86
八、發酵牛乳乳清中胺基酸的變化……………………………...87
九、發酵牛乳乳清中劃分收集物A4與A5之芳香族、鹼性及疏水性胺基酸含量…………………………………………... 88
十、發酵時間對乳酸菌發酵牛乳乳清粉末之GABA含量的影響……………………………………………………………... 89
十一、儲存時間對乳酸菌發酵牛乳全乳或乳清中pH值、酸度與官能品評之影響…………………………………………... 90
十二、儲存時間對乳酸菌發酵牛乳乳清中可溶性蛋白的影響...91
十三、儲存時間對乳酸菌發酵牛乳乳清中胜肽含量與IC50值的影響…………………………………………………………... 92
十四、蔗糖含量對乳酸菌發酵牛乳之pH值、胜肽含量與IC50值的影響……………………………………………………... 93
附表一、本實驗所使用蛋白酶的性質…………………………...94
附表二、原發性高血壓老鼠(SHR)實驗動物之飼料組成…... 95
八、參考文獻
Abraham, A. G., Antoni,G. L. and Anon, M. C. 1993.
Proteolytic activity of Lactobacillus bulgaricus growth
in milk. J. Dairy Sci. 73:894-899.
Alder-Nissen, J. 1986. “Enzymatic Hydrolysis of Food
Proteins”. Elsevier Applied Science Pub. New York.
Alm, L . 1982. Effect of fermentation on lactose, glucose,
and galactose content in milk and suitability of
fermentation milk production for lactose intolerant
individuals. J. Dairy Sci. 65:352.
Alm, L. 1982a. Effect of fermentation on B-vitamin content
of milk in Sweden. J. Dairy Sci. 65:353-359.
Aoki, H., Uda, I., Tagami, K., Furuya, Y. and Endo, Y.
2003. The production of a new temoeh-like fermented
soybean containing a high level of γ-aminobutyric acid
by anaerobic incubation with rhizopus. Biosci.
Biotechnol. Biochem. 67(5):1018-1023.
Bormann, J. 2000. The “ABC” of GABA receptors. Trends in
Pharmacological Sciences. 21(1):16-19.
Breslaw, E. S. and Kleyn, D. H. 1973. In vitro
digestibility of protein in yogurt at various stages of
processing. J. Food Sci. 59:1016-1021.
Buenning, P. and Riordan, J. F. 1983. Activation of
angiotensin converting enzyme by monovalent anions.
Biochemistry. 22:110-116.
Cerna, J., and Hrabova, H. 1977. Biologic enrichment of
fermented milk beverages with vitamin B12 and folic acid.
Milchwissenschaft. 32(5):274-277.
Chandan, R. C., Argyle, P. J. and Mathison, G. E. 1982.
Action of Lactobacillus bulgaricus proteinase
preparations on milk protein. J. Dairy Sci. 65:1408-1412.
Cheung, H. S. and Chushman, D. W. 1971. spectrophotometric
assay and properties of the angiotensin-converting enzyme
of rabbit lung. Biochem. Pharmacol. 20:1637-1648.
Cheung, H. S., Wang, F. L., Ondetti, M. A., Sabo, E. F. and
Cushman, D. W. 1980. Binding of peptide substrates and
inhibitors of angiotensin-converting enzyme. J. Biol.
Chem. 255(2):401-407.
Church, F. C., Swaisgood, H. E., Porter, D. H. and
Catignani, G. L. 1983. Spectrophotometric assay using o-
phthaldialdehyde for determination of proteolysis in milk
and isolated milk proteins. J. Dairy Sci. 66:1219-1227.
Corvol, P., Ewilliams, T. A., and Soubrier, F. 1995.
Peptidyl dipeptidase A: angiotensin I-converting enzyme.
Methods Enzymol. 248:283-305.
Deeth, H. C. and Tamine, A. Y. 1981. Yogurt:Nutritive and
therapeutic aspects. J. Food Proc. 44:78-86.
Desmazeaud, M. J.and Gripon, J. C. 1977. General mechanism
of protein breakdown during cheese ripening.
Milchwissenschaft. 32:731-734.
Desmarais, S. R., Riendeau, D. and Gresser, M. 1994.
Inhibition of soybean lipoxygenase-1 by a diaryl-N-
hydroxyurea by reduction of ferric enzyme. J. Biochem.
33:13391-13400.
Donnell, MM., Fitgerald, R., Fhaolain IN., Jennings, PV.
and O’Cuinn, G. 1997. Purification and characterization
of aminopeptidase P from Lactococcus lactis subsp.
cremoris. J. Dairy Res. 64: 399-407.
Faith, R. E., Liang, H. J., Murgo, A. J. and Plotnikoff, N.
P. 1984. Neuroimmunomodulation with
enkephalins:enhancement of human natural killar(NK)
cell activity invitro. Clinical Immunology and
Immunopathology. 31:412-418.
Fernandez-Espia, M. D. and Rul, F. 1999. PepS from
Streptococcus thermophilus. A new member of the
aminopeptidase T family of thermophilus bacteria.
European Journal of Biochemistry. 263:502-510.
Friend, B. A., Fiedler, J. M. and Shahani, K. M. 1983.
Influence of culture selection on the flavour,
antimicrobial activity, β-galactosidase and B-vitamins
of yogurt. Milchwissenschaft. 38:133-136.
Furushiro, M., Sawada, H., Hirai, K., Motoike, M., Sansawa,
H., Kobayashi, S., Watanuki, M., and Yokokura, T. 1990.
Blood pressure-lowering effect of extract from
Lactobacillus casei in Spontaneously hypertensive rats
(SHR). Agric. Biol. Chem. 54(9): 2193-2198.
Gonzales, T. and Robert-Baudouy, J. 1996. Bacterial
aminopeptidases: Properties and functions. FEMS
Microbiology Reviews. 18:319-344.
Guthrie, G. D., Nicholson-Guthrie, C. S., and Leary, H. L.
2000. A bacterial high-affinity GABA binding protein:
Isolation and characterization. Biochemical and
Biophysical Research Communications. 268: 65-68.
Halonen, T., Pitkanen, A., Saano, V. and Riekkinen, P. J.
1991. Effects of vigabatrin(gamma-vinyl GABA)on
neurotransmission-related amino acid and on GABA and
benzodiazepine receptor binding in rats. Epilepsia. 32:
242-249.
Hata, Y., Yamamoto, M., Ohni, M., Nakajima, M., Nakamura,
Y. and Takano, T. 1996. A placebo-controlled study of the
effect of sour milk on blood-pressure in hypertensive
subjects. American J. Clinical Nutrition. 64:767-771.
Hayakawa, K., Kimura, M. and Kamata, K. 2002. Mechanism
underlying γ-aminobutyric acid-induced antihypertensive
effect in spontaneously hypertensive rats. European
Journal of Pharmacology. 438:107– 113.
Hewitt, D., and Bancroft, H. J.1985.Nutritional value of
yogurt. J. Dairy Res. 52:197-207.
Hooper, N. M. and Turner, A. J. 1987. Isolation of two
differentially glycosylated forms of peptidyl-dipeptidase
A (angiotensin converting enzyme)from pig brain: a re-
evaluation of their role in neuropeptide metabolism.
Biochem. J. 241:625-633.
Inoue, K., Shirai, T., Ochiai, H., Kasao, M., Kayakawa, K.,
Kimura, M. and Sansawa, H. 2003. Blood-pressure-lowering
effect of a novel fermented milk containing γ-
aminobutyric acid(GABA)in mild hypertensives. European
Journal of Clinical Nutrition. 57:490-495.
Jolles, P., Levy-Toledano, S., Fiat, A. M., Soria, C.,
Gillessen, D., Thomaidis, A., Dunn, F., Caen, J. 1986.
Analogy between fibrinogen and casein: Effect of an
undecapeptides isolated fromκ-casein on platelet
function. Eur. J. Biochem. 158:379-382.
Jolles, p. and Caen, J. P. 1991. Parallels between milk
clotting and blood clotting:opportunities for milk-
derived products. Trends Food Sci. Technol. 2:42-43.
Kloczewiak, M., Timmons, S., Lukas, T. J., Hawiger, J.
1984. platelet receptor recognition sites on human
fibrinogen: Synthesis and structure function relation
ship of peptides corresponding to the carboxyterminal
segment of the γ-chain. Biochem. 23:1767-1774.
Krishnamoorthy, R. and Mitra, A. K. 1995. Peptide
metabolism by gastric, pancreatic and lysosomal
proteinases in :Peptide-based drug design (M.D. Talor and
G. L. Amidon, eds), ACS Professional Reference Book,
Washington, DC:47-65.
Law, J., and Haandrikman, A. 1997. Review article
proteolytic enzymes of lactic acid bacteria. Int. Dairy
J. 7:1-11.
Loones, A. 1989. "Transformation of milk components during
yogurt fermentatuin ". In Yogurt:Nutritional and health
properties. R. C. Chandan. Ed. P. 95-114. National Yogurt
Association McLean, Virginia, U. S. A.
Lopker, A., Abood, L. G., Hoss, W. and Lionetti, F. J.
1989. Stereoselective muscarinic acetylcholine and opiate
receptors in human phagocytic leukocytes. Biochemical
Pharmacology 29: 1361-1365.
Mahmoud, M. I. 1994. Physicochemical and functional
properties of protein hydrolysates in nutritional
products. Food Technol. 48(10):89-95.
Marshall, V. M. 1987. Fermented milks and their future
trends. Part I. Microbiological aspects. J. Dairy Res.
54:559-574.
Matar, C., Amiot, J., Savoie, L. and Goulet, J. 1996. The
effect of milk fermentation by Lactobacillus helveticus
on the release of peptides during in vitro digestion. J.
Dairy Sci. 79:971-979.
Matthews, D. M., Frcpath and Abidi, S. A. 1976. Peptide
absorption. Gastroenterology 71:151-161.
Meisel, H. and Frister, H. 1988. Chemical characterization
of a caseinophosphopeptides isolated from in vivo digests
of a casein diet. Biol. Chem. Hoppe-Seyler.369:1275-1279.
Meisel, H. and Schlimme, E. 1990. Milk proteins:precursors
of bioactive peptides. Trends in Food Sci. Technol. 8:41-
43.
Migliore-Samour. D., Floch, F. and Jolles, P.1989.
Biologically active casein peptide implicated in
immunomodulation. J. Dairy Res. 56:357-362.
Mykanen, H. M. and Wassermann, R. H. 1980. Enhanced
absorption of calcium by casein phosphopeptides in
Rachitic and normal chicks. J. Nutr. 110:2141-2148.
Nakamura, Y., Yamamoto, N., Sakai, K., Okubo, A., Yamazaki,
S. and Takano, T. 1995. Antihypertensive effect of sour
milk and peptides isolated from it that are inhibitors to
angiotensin I-converting enzyme . J. Dairy Sci. 78:1253-
1257.
Nakamura, Y., Masuda, O. and Takano, T. 1996. Decrease of
tissue angiotensin I-converting enzyme activity upon
feeding sour milk in spontaneously hypertensive rats.
Biosci. Biotech. Biochem. 60(3): 488-489.
Nelson, M. J., Batt, D. G., Thompson, J. S. and Wright, S.
W. 1991. Reduction of the active-site iron by potent
inhibitors of lipoxygenase. J.Biol. Chem. 266:8225-8229.
Ono, J., Goto, T. and Okonogi, S. 1992."Metabolism and
propogation rates in lactic acid bacteria". In function
of fermented milk. P.165-190. Edited by Elsevier Science
Publishing Co. London.
Otero, L. M. 1990. GABAergic influence on serotoergic
function. Biogenic Amines. 7:289-297.
Peterson, G. L. 1979. Review of the Folin phenol protein
quantitation method of Lowry, Rosebrough, Farr, and
Randall. Anal. Biochem. 100:201-220.
Pihlanto-Leppälä, A. 2001. Bioactive peptides derived from
bovine whey protein:opoid and ace-inhitory peptides.
Trends in Food Science & Technology. 11:347-356.
Rajagagopal, S.N. and Sandine, W. E. 1990. Associative
growth and proteolysis of Streptococcus thermophilus and
Lactobacillus bulgaricus in skim milk, J. Dairy Sci. 73:
894-899.
Reddy, K. P., Shahni, K. M. and Kulkarni S. M. 1976. B-
complex vitamins in cultured and acidified yogurt. J.
Dairy Sci. 59(2):191-195.
Rubinstein, I., Houmsse, M., Dacvis, R. G., and
Visfhwanatha, J. K. 1992. Tissue angiotensin I-converting
enzyme activity in spontaneously hypertensive hamsters.
Bio. and Bioph.l Res. Commun. 183(3):1117-1123.
Saha, B. C. and Hayashi, K. 2001. Debittering of protein
hydrolyzates. Biotechnology Advances. 19:355-370.
Sandrine, G. R., Silvia, F., Carmen, G. B. and Harry, J. W.
2001. Caseins and casein hydrolysates. 1. lipoxygenase
inhibitory. J. Agric. Food Chem. 49:287-294.
Shelp, B., Bown, A. W. and Mclean, M. D. 1999. Metabolism
and functions of gamma-aminobutyric acid. Trends in Plant
Science. 4(11):446-452.
Tamime, A. Y. and Deeth, H. C. 1980. Yogurt:technology and
biochemistry. J.Food Prot. 43:939-977.
Tamime, A. Y. and Robinson, R. K. 1985. Biochemistry of
fermentation. In:yogurt science and technology. P.7-238.
Pergamon press, Ltd.
Tamime, A. Y. and Robinson, K. 1988. Fermented milks and
their future trends. Par II. Technological aspects. J
Dairy Res. 55:281-307.
Tavaria, F. K., Franco, I., Carballo, F. J., F. Malcata, X.
2003. Amino acid and soluble nitrogen evolution
throughout ripening of Serra da Estrela cheese. Int.
Dairy J. 13:537-545.
Valletri, P. A., Billingsley, M. L. and Lovenberg, W. 1985.
Thermal denaturation of rat pulmonary and testicular
angiotensin-converting enzyme isozymes. Effects of
chelators and CoCl2. Biochem. Biophys. Acta. 839:71-82.
Walters, D. E. 1996. How are bitter and sweet taste
related? Trends in Food Science & Technology. 11(7):
399-403.
Watanabe, M., Maemura, K., Kanbara, K., Tamayama, T. and
Hayasaki, H. 2002. Gaba and gaba receptors in the central
nervous system and other organs. International Review of
Cytology. 213:1-47.
Wu, J. and Ding, X. 2002. Characterization of inhibition
and stability of soy-protein-derived angiotensin I -
converting enzyme inhibitory peptides. Foof Research
International. 35:367-375.
Wybran, J., Appelboom. T., Famacy, J. P. and Govaerts,
A.1979. Suggestive evidence for receptors for morphine
and methionine-enkephalin on normal human blood T
lymphocytes. Journal of Immunology. 123:1068 - 1070.
Xiang, L. and Songu-Mize, E. 1997. Alterations in alpha
subunit expression of cardiac Na+, K+-ATPase in
spontaneously hypertensive rats:effect of
antihypertensive therapy. Europ. J. Pharmacol. 327(2-
3):151-156.
Yamamoto, N. and Takano, T. 1999. Antihypertensive peptides
derived from milk protein. Nahrung. 43.Nr.3, S. 159-164.
Yamauchi, K., Tomita, M., Giehl, T. J., Ellison, r. t.
1993. Antibacterial activity of lactoferrin and a pepsin-
derived lactoferrin peptide fragment. Infect. Immun. 61:
719-728.
Yokoyama, S., Hiramatsu J. and Hayakawa K. 2002. Production
of γ-aminobutyric acid from alcohol distillery lees by
Lactobacillus brevis IFO-12005. Journal of Bioscience and
Bioengineering. 93:95-97.
Zinn, S.1997. Bioactive components in milk : introduction.
Livest. Prod. Sci. 50:101-103.
丁予安。1999。臨床高血壓學。藝軒圖書出版社。台北。
呂峰洲、林仁混。1991。基礎酵素學。聯經出板社。台北。
林寅申。2003。發酵豆漿之乳清對血管升壓素轉換酶及脂氧合酶之抑
制及其降低高血壓的效果。國立台灣海洋大學食品科學研究所,基
隆,台灣。
陳冠文。2001。發酵牛乳中之乳清對血管升壓素轉換酶之抑制及其降
低高血壓的效果。國立台灣海洋大學食品科學研究所,基隆,台
灣。
張宇恆。2002。以生乳及還原乳製成酸酪乳之物理和化學性質探討。
國立中興大學食品科學研究所,台中,台灣。
郭卿雲。2000。克弗爾菌元生長與克弗蘭生成之研究。博士論文。國
立台灣大學畜產學研究所,台北,台灣。
細野明義。1990b。牛乳發酵による機能性の向上。New Food
Industry. 32:51-64。
葉政霖。2002。鰺魚水解物中胜肽鑑定與降高血壓的效果。國立台灣
海洋大學食品科學研究所,基隆,台灣。
溫士勳。2001。苦味簡介。食品工業。33(1)。pp.28-39。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top