跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:ac57:fc92:1c8d:566e) 您好!臺灣時間:2025/01/14 07:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:戴珊如
研究生(外文):Shan-Ju Tai
論文名稱:乳鐵蛋白對草蝦稚蝦成長及免疫反應之影響
論文名稱(外文):The effects of lactoferrin on growth and immune responses in juvenile grass shrimp, Penaeus monodon
指導教授:蕭錫延蕭錫延引用關係
指導教授(外文):Shi-Yen Shiau
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:61
中文關鍵詞:乳鐵蛋白草蝦成長免疫
外文關鍵詞:lactoferringrass shrimpgrowthimmune responses
相關次數:
  • 被引用被引用:0
  • 點閱點閱:452
  • 評分評分:
  • 下載下載:84
  • 收藏至我的研究室書目清單書目收藏:0
摘要
乳鐵蛋白(lactoferrin, LF)為與2個鐵離子結合之單鏈醣蛋白,LF具有促進陸上動物免疫 (immunity)的能力,但對水產動物至今無相關研究。本研究目的為探討乳鐵蛋白對草蝦稚蝦成長及免疫反應之影響。草蝦基礎飼料中分別添加0, 100, 300, 700, 1,000, 2,000及5,000 mg LF/kg diet,共七個實驗組,分別餵予平均初重0.15 ± 0.01 公克草蝦,每組三重複,每日餵食量為蝦體濕重之8%,實驗為期八週。草蝦餵予≧ 2,000 mg LF/kg之蝦體增重百分率顯著(P< 0.05)高於≦ 700 mg LF/kg組;飼料效率及蛋白質效率以2,000 mg LF/kg組最高,其次為5,000 mg LF/kg組,最低為≦ 700 mg LF/kg各組。草蝦存活率在各組之間則無差異。餵予1,000 mg LF/kg組之蝦體肌肉鐵濃度顯著高於≦ 300及5,000 mg LF/kg各組。草蝦血淋巴液中血球細胞數目以700 - 2,000 mg LF/kg各組顯著高於≦ 100 mg LF/kg各組。血球細胞超氧陰離子產率以300 - 2,000 mg LF/kg各組顯著高於100及5,000mg LF/kg兩組。酚氧化酵素活性及超氧歧化酵素活性是以≧ 300 mg LF/kg之各組顯著高於未添加組。由本研究結果顯示,餵予2,000 mg LF/kg可促進草蝦稚蝦之成長,餵予700 - 2,000 mg LF/kg則可提高其免疫機能。
Abstract
This study was conducted to elucidate the effects of lactoferrin (LF) on growth and immune responses in juvenile grass shrimp, Penaeus monodon. Basal diet supplemented with seven levels (0, 100, 300, 700, 1,000, 2,000, 5,000 mg/kg diet) of LF were each fed to triplicate groups of shrimp (initial weight 0.15 ± 0.01 g) for 8 weeks. Shrimp fed diets supplemented with ≧ 2,000 mg LF/kg had significantly (P< 0.05) higher weight gain than shrimp fed diets with ≦ 700 mg LF/kg. Feed efficiency and protein efficiency ratio were highest in shrimp fed diet with 2,000 mg LF/kg, followed by shrimp fed diet with 5,000 mg LF/mg, and lowest in shrimp fed diets with ≦ 700 mg LF/kg. Higher muscle iron concentration was observed in shrimp fed diet with 1,000 mg LF/kg than shrimp fed diets with ≦ 300 and 5,000 mg LF/kg. Total haemocyte count was higher in shrimp fed diets supplemented with 700 - 2,000 mg LF/kg than shrimp fed diets supplemented with ≦ 100 mg LF/kg. Intracellular superoxide anion production ratio were higher in shrimp fed diets with 300 - 2,000 mg LF/kg than shrimp fed diets with 100 and 5,000 mg LF/kg. The phenoloxidase activity and superoxide dismutase activity were higher in shrimp fed diets with ≧ 300 mg LF/kg than shrimp fed the unsupplemented control diet. These results suggest that the dietary LF concentrations for better growth and immune responses in P. monodon are 2,000 mg LF/kg and 700 - 2,000 mg LF/kg, respectively
目錄
中文摘要.........................I
英文摘要.........................II
文獻整理.........................1
前言...........................18
材料與方法........................20
結果...........................33
討論...........................40
結論...........................44
參考文獻.........................45

圖目錄
圖一、牛乳鐵蛋白之分子結構................3
圖二、牛乳鐵蛋白C球葉上鐵結合區.............4
圖三、乳鐵蛋白之免疫調節活性...............5
圖四、乳鐵蛋白刺激免疫活性之可能機制...........7

表目錄
表一、乳鐵蛋白於人體內之含量............2
表二、不同動物乳汁中乳鐵蛋白之含量.........2
表三、牛乳鐵蛋白於水產動物之相關研究........15
表四、草蝦基礎飼料之組成..............21
表五、實驗飼料之一般組成..............22
表六、草蝦稚蝦餵食不同乳鐵蛋白含量之飼料八週後之 增重百分率、存活率、飼料效率及蛋白質效率......35
表七、草蝦稚蝦餵食不同乳鐵蛋白含量之飼料八週後之 蝦體組成......................36
表八、草蝦稚蝦餵食不同乳鐵蛋白含量之飼料八週後其 肝體比及肝胰臟、肌肉中鐵含量............37
表九、草蝦稚蝦餵食不同乳鐵蛋白含量飼料八週後之蝦 淋巴液內血球細胞數目及超氧陰離子產率........38
表十、草蝦稚蝦餵食不同乳鐵蛋白含量飼料八週後之細 胞間酚氧化酵素活性及超氧歧化酵素活性........39
參考文獻
Aguilera, O., Ostolaza, H., Quiros, L.H., Fierro, J.F., 1999. Permeabilizing action of antimicrobial lactoferrin-derived peptide on bacterial and artificial membrances. FEBS Lett. 462, 273-277.
Anderson, D.P., 1992. Immunostimulants, adjuvants and vaccine carriers in fish: applications to aquaculture. Ann. Rev. Fish Dis. 2, 281-307.
Aruoma, O.I., Halliwell, B., 1987. Superoxide-dependent and acerbate- dependent formation of hydroxyl radicals from hydrogen peroxide in the presence of iron. Biochem. J. 241, 273-278.
Association of Official Analytical Chemists (A.O.A.C), 1995. Official Methods of Analysis, 16th edn., Arlington, VA, USA.
Bauchau, A.G., 1981. Crustacean. In: Ratcliffe, N.A., Rowley, A.F. (Eds.), Invertebrate blood cell. Academic Press, London. pp. 387-417.
Boxer, L.A., Gaak, R.A., Yang, H.H., Wolach, J.B., Whitcomb, J.A., Butteick, C.J., 1982. Membrane-bound lactoferrin alters the surface properties of polymorph nuclear leukocytes. J. Clin. Invest. 70, 1049-1057.
Britigan, B.E., Serody, J.S., Cohen, M.S., 1994. The role of lactoferrin as an anti-inflammatory molecule. Adv. Exp. Med. Biol. 357, 143-156.
Brock, J., 1995. Lactoferrin: a multifunctional immunoregulatory protein? Immunol. Today 16, 417-419.
Chang, C.F., Su, M.S., Chen, H.Y., 1999. A rapid method to quantify total haemocyte count of Penaeus monodon using ATP analysis. Fish Pathol. 34, 211-212.
Crouch, S.P.M., Slater, K.J., Fletcher, J., 1992. Regulation of cytokine release from mononuclear cells by the iron-binding protein lactoferrin. Blood 80, 235-240.
Di Guilio, R.T., Washburn, P.C., Wenning, R.J., Winston, G.W., Jewell, C.S., 1989. Biochemical responses in aquatic animals: a review of determinants of oxidative stress. Environ. Toxicol. Chem. 8, 1103-1123.
E-Rochard, E., Legrand, D., Salmon, V., Roseanu, A., Trif, M., Toblas, P.S., Mazurier, J., Spik, G., 1998. Lactoferrin inhibits the endotoxin interaction with CD14 by competition with the lipopolysaccharide -binding protein. Infect. Immun. 66, 486-491.
FAO Yearbooks of Fisheries Statistics, 2002. Food Agriculture Organization of the United Nations, Rome.
Forster, J.R.M., Beard, T.M., 1974. Experiments to assess the suitability of nine species of prawns for intensive cultivation. Aquaculture 3, 355-368.
Gallardo-Cigarroa, F.J., Koshio, S., Hayasawa, H., Oshida, K., 2000. Effect of bovine lactoferrin on performance of Japanese flounder Paralichthys olivaceus. In: Shimazaki, K. (Ed.), Lactoferrin: Structure, Function and Applications. Elsevier Science Publishers. B.V., Kagochima, Japan, pp. 443-449.
Gislason, J., Douglas, G.C., Hutchens, T.W., Lonnerdal, B., 1991. Receptor-mediated binding of milk lactoferrin to nursing piglet enterocytes: a model or studies on absorption of lactoferrin-bound iron. Biophys. Res. Commun. 180, 75-84.
Groenink, J., Walgreen-Weterings, E., Hof, W.V., Veerman, E.C.I., Amerongen, A.V.N., 1999. Cationic amphipathic peptides, derived from bovine and human lactoferrins, with antimicrobial activity against oral pathogens. FEMS Microbiol. Lett. 179, 217-222.
Groves, M.L., 1960. The isolation of a red protein from milk. J. Am. Chem. Soc. 82, 3345-3350.
Gutteridge, J.M.C., Paterson, S.K., Segal, A.W., Halliwell, B., 1981. Inhibition of lipid peroxidation by the iron binding protein lactoferrin. Biochem. J. 199, 259-261.
Harrington, J.P., 1992. Spectroscopic analysis of the unfolding of transition metal-ion complexes of human lactoferrin and transferring. Int. J. Biochem. 24, 275-280.
Harris, E.D., 1992. Copper as a cofactor and regulator of copper, zinc superoxide dismutase. J. Nutr. 122, 636-640.
Hashizume, S., Kurda, K., Murakami, H., 1983. Identification of lactoferrin as an essential growth factor for human lymphocytic cell lines in serum-free medium. Biochim. Biophys. Acta 763, 377-382.
Holmblad, T., Söderhäll, K., 1999. Cell adhesion molecules and antioxidative enzymes in a crustacean, possible role in immunity. Aquaculture 172, 111-123.
Hose, J.E., Martin, G.G., Gerard, A.S., 1990. A decapod hemocyte classification scheme integrating morphology, cytochemistry and function. Biol. Bull. 178, 33-45.
Hsu, T.S., Shiau, S.Y., 1999. Influence of dietary ascorbate derivatives on tissue copper, iron and zinc concentrations in grass shrimp, Penaeus monodon. Aquaculture 179, 457-464.
Itami, T., Takahashi, Y., Tsuchihira, E., Igusa, H., Kondo, M., 1994. Enhancement of disease resistance of kuyuma prawn Penaeus japonicus and increase in phagocytic activity of β-1,3-glucan (Schizzophyllan). The Third Asian Fisheries Forum. Asian Fisheries Society, Manila.
Iyer, S., Lonnerdal, B., 1993. Lactoferrin, lactoferrin receptors and iron metabolism. Eur. J. Clin. Nutr. 47, 232-241.
Johansson, B.G., 1960. Isolation of and iron-containing red protein from human milk. Acta Chem. Scand. 14, 510-512.
Johansson, N.W., Söderhäll, K., 1990. Cellular immunity in crustaceans and the proPO system. Parasit. Today 5, 171-176.
Kakuta, I., 1996. Effects of orally administrated bovine lactoferrin on growth and blood properties of goldfish. Suisanzoshoku 44, 419-426.
Kakuta, I., 1997. Effects of orally administrated bovine lactoferrin on the nonspecific biodefense activity of rainbow trout, Oncorhynchus mykiss. Bull Ishinomaki Senshu Univ. 8, 53-57.
Kakuta, I., 1998. Reduction of stress response in carp, Cyprinus carpio L., held under deteriorating environmental conditions, by oral administration of bovine lactoferrin. J. Fish Dis. 21, 161-167.
Kakuta, I., Kurokura, H., 1995. Defensive effect of orally administered bovine lactoferrin against Cryptocaryon irritans infection of red sea bream. Fish Path. 30, 289-290.
Kakuta, I., Kurokura, H., Nakamura, H., Yamauchi, K., 1996. Enhancement of the nonspecific defense activity of the skin mucus of red sea bream by oral administration of bovine lactoferrin. Suisanzoshoku 44, 197-202.
Kijlstra, A., Jeruissen, S.H., 1982. Modulatoin of classical C3 convertase of complement by tear lactoferrin. Immunology 47, 263-270.
Koshio, S., Yokoyama, S., Ishikawa, M., Hayasawa, H., Oshida, K., 2000. Effect of lactoferrin on growth, survival and tolerance to stress of kuruma prawn Penaeus japonicus. In: Shimazaki, K. (Ed.), Lactoferrin: Structure, Function and Applications. Elsevier Science Publishers. B.V., Kagochima, Japan, pp. 451-455.
Kumari, J., Swain, T., Sahoo, P.K., 2003. Dietary bovine lactoferrin induces changes in immunity level and disease resistance in Asian catfish Clarias batrachus. Vet. Immunol. Immunopathol. 94, 1-9.
Labbe, M.R., Fischer, P.W.F., 1984. The effect of high dietary zinc and copper deficiency on the activity of copper requiring metalloenzymes in the growing rat. J. Nutr. 114, 813-822.
Le Moullac, G., Le Groumellec, M., Ansquer, D., Forissard, S., Levy, P., Aquacop., 1997. Haematological and phenoloxidase activity changes in the shrimp Penaeus stylirostris in relation with the moult cycle: protection against vibriosis. Fish Shellfish Immunol. 7, 227-234.
Lee, M.H., Shiau, S.Y., 2002a. Dietary vitamin C and its derivatives affect immune responses in grass shrimp, Penaeus monodon. Fish Shellfish Immunol. 12, 119-129.
Lee, M.H., Shiau, S.Y., 2002b. Dietary copper requirement of juvenile grass shrimp, Penaeus monodon, and effects on non-specific immune responses. Fish Shellfish Immunol. 13, 259-270.
Lee, M.H., Shiau, S.Y., 2003. Increase of dietary vitamin C improves haemocyte repiratory burst response and growth of juvenile grass shrimp, Penaeus monodon, fed with high dietary copper. Fish Shellfish Immunol. 14, 305-315.
Levay, P.F., Viljoen, M., 1995. Lactoferrin: A general review. Haematol. 80, 252-267.
Liao, I.C., 1989. Penaeus monodon culture in Taiwan: Through two decades of growth. Int. J. Aquacult. Fish. Technol. 1, 16-24.
Liao, I.C., Chao, N.H., 1983. Development of prawn culture and its related studies in Taiwan. In: Rogers, G.L., Day, R., Lim, A. (Eds.), Proceedings of the first international conference of warm water aquaculture-crustacea. Brigham Young University, Hawaii, USA, pp. 127-142.
Liao, I.C., Su, M.S., Chang, C.F., 1992. Diseases of Penaeus monodon in Taiwan: A review from 1977 to 1991. In: Fulks, W., Main, K.L. (Eds.), Disease of Cultured Penaeid Shrimp in Asia and the United States, conference of warm water aquaculture-crustacea. The Oceanic Institute, Hawaii, USA. pp. 113-137.
Lin, C.T., Lee, T.L., Duan, K.J., Su, J.C., 2001. Purification and characterization of black porgy muscle Cu/Zn superoxide dismutase. Zool. Studies 40, 84-90.
Lonnerdal, B., 1994. Lactoferrin receptors in intestinal brush border membranes. Advances in experimental medicine and biology 375, 171-175.
Lonnerdal, B., Iyer, S., 1995. Lactoferrin: molecular structure and biological function. Annu. Rev. Nutr. 15, 93-110.
Lorentzen, M., Maage, A., 1999. Trace element status of juvenile Atlantic salmon Salmo salar L. fed a fish-meal based diet with or without supplementation of zinc, iron, manganese and copper from first feeding. Aquacult. Nutr. 5, 163-171.
Lygren, B., Sveier, H., Hjeltnes, B., Waagbo, R., 1999. Examination of the immunomodulatory properties and the effect on disease resistance of dietary bovine lactoferrin and vitamin C fed to Atlanic salmon (Salmo salar) for a short-term period. Fish Shellfish Immunol. 9, 95-107.
Machnicki, M., Zimecki, M., Zagulski, T., 1993. Lactoferrin regulates the release of tumors necrosis factor alpha and interleukin 6 in vivo . Int. J. Exp. Path. 74, 433-439.
Miyauchi, H., Hashimoto, S.I., Nakajim, M., Shinoda, I., 1998. Bovine lactoferrin stimulates the phagocytic activity of human neutrophil: identification of its active domain. Cell Immunol. 187, 34-37.
Moore, S.A., Anderson, B.F., Groom, C.R., Haridas, M., Baker, E.N., 1997. Three-dimensional structure of diferric bovine lactoferrin at 2.8 Å resolution. J. Mol. Biol. 274, 222-236.
Nichols, B.L., McKee, K.S., Henry, J.F., Putman, M., 1987. Human lactoferrin stimulates thymidine incorporation into DNA of rat crypt cells. Pediatr. Res. 21, 563-567.
Nuijens, J.H., van Berkel, P.H.C., Schanbacher, J.L., 1996. Structure and biological action of lactoferrin. Journal Mammary Gland Biology and Neoplasia 1, 285-295.
Ortuno, J., Esteban, M.A., Meseguer, J., 1999. Effect of high dietary intake of vitamin C on non-specific immune response of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol. 9, 429-443.
Owens, L., O’Neill, A., 1997. Use of clinical cell flow cytometer count of prawn Penaeus monodon haenocytes. Dis. Aquat. Org. 31, 147-153.
Rado, T.A., Bollekens, J., Laurent, G.St., Parker, L., Benz, E.J., 1984. Lactoferrin biosynthesis during granulocytopoiesis. Blood 64, 1103-1109.
Ratner, S., Vinson, S.B., 1983. Phagocytosis and encapsulation: cellular immune responses in arthropoda. Am. Zool. 23, 185-194.
Sahoo, P.K., Mukherjee, S.C., 1999. Immunostimulants in aquaculture. In: Mohapatra, B.C., Ingole, P.G., Bharad, G.M. (Eds.), Aquaculture with Special Reference to Vidarba, Maharasthra State, India. Dr. P.D.K.V., Akola, pp. 282-293.
Sakai, M., 1999. Current research status of fish immunostimulants. Aquaculture 172, 63-92.
Sakai, M., Kobayashi, M., Yoshida, T., 1995. Activation of rainbow trout, Oncorhynchus mykiss, phagocytic cells by administration of bovine lactoferrin. Comp. Biochem. Physiol. 110, 755-759.
Sakai, M., Otubo, T., Atsuta, S., Kobayashi, M., 1993. Enhancement of resistance to bacterial infection in rainbow trout, Oncorhynchus mykiss (Walbaum), by oral administration of bovine lactoferrin. J. Fish Dis.16, 239-247.
Sanchez, L., Calvo, M., Brock, J.H., 1992. Biological role of lactoferrin. Arch. Dis. Child. 67, 657-661.
Schibli, D.J., Hwang, P.M., Vogel, H.J., 1999. The structure of the antimicroial active center of lactoferricin B bound to sodium dodecyl sulfate micelles. FEBS Lett. 446, 213-217.
Secombes, C.J., 1990. Isolation of salmonid macrophages and analysis of their killing activity. In: Stolen, J.S., Fletcher, T.C., Anderson, D.P., Roberson, B.S., Van Muiswinkel, W.B. (Eds.), Fish Immunology. SOS Publications, Fair Haven, NJ, pp. 137-154.
Siwicki, A.K., Anderson, D.P., Rumsey, G.L., 1994. Dietary intake of immunostimulants by rainbow trout affects non-specific immunity and protection against furunculosis. Vet. Immunol. Immunopathol. 41, 125-139.
Smith, V.J., Söderhäll, K., 1991. A comparison of phenoloxidase activity in the blood of marine invertebrates. Dev. Comp. Immunol. 15, 251-261.
Song, Y.L., Hsieh, Y.T., 1994. Immunostimulation of tiger shrimp (Penaeus monodon) hemocytes for generation of microbicidal substances: analysis of reactive oxygen species. Dev. Comp. Immunol. 18, 201-209.
Söderhäll, K., Smith, V.J., 1983. Separation of the hemocyte populations of Carcinus maenas and other marine decapods, and pro-phenoloxidase distribution. Dev. Comp. Immunol. 7, 229-239.
Söderhäll, K., Unestam, T., 1979. Activation of serum prophenoloxidase in arthropod immunity: the specificity of cell wall glucan activation and activation by purified fungal glycoproteins of crayfish phenoloxidase. Can. J. Microbiol. 25, 404-416
Steijns, J.M., Hooijdonk, A.C.M., 2000. Occurrence, structure, biochemical properties and technological characteristics of lactoferrin. Br. J. Nutr. 1, 11-17.
Su, M.S., Liao, I.C., 1992. A historical review of prawn culture in Taiwan. In: Liao, I.C., Shyu, C.Z., Chao, N.H. (Eds.), Aquaculture in Asia: Proceedings of the 1990 APO Symposium on Aquaculture. TFRI Conference Proceedings 1, 239-246.
S-Gracia, M.T., Frankel, E.N., Rangavajhyala, N., German, J.B., 2000. Lactoferrin in infant formulas: effect on oxidation. J. Agric. Food Chem. 48, 4984-4990.
Tomita, M., Wakabayashi, H., Yamauchi, K., Teraguchi, S., Hayasawa, H., 2002. Bovine lactoferrin and lactoferricin derived from milk: production and applications. Biochem. Cell Biol. 80, 109-112.
Ye, X.Y., Wang, H.X., Liu, F., Ng, T.B., 2000. Ribonuclease, cell-free translation-inhibitory and superoxide radical scavenging activities of the iron-binding protein lactoferrin from bovine milk. J. Biochem. Cell. Biol. 32, 235-241.
陳玉芝,1999年。牛乳鐵蛋白對草蝦抗病能力之影響。國立臺灣大學漁業科學研究所,碩士學位論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top