跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/08 00:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱元珍
研究生(外文):Yuan-Jan Ju
論文名稱:人類糞便中產氣莢膜桿菌幾丁質酶的純化與性質之研究
論文名稱(外文):Purification and Characterization of Chitinases from Clostridium perfringens in Human feces
指導教授:陳幸臣陳幸臣引用關係
指導教授(外文):Hsing-Chen Chen
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:115
中文關鍵詞:人類糞便幾丁質酶幾丁質產氣莢膜桿菌純化性質
外文關鍵詞:human feceschitinasechitinClostridium perfringensPurificationCharacterization
相關次數:
  • 被引用被引用:1
  • 點閱點閱:290
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要

本研究係自人類糞便中分離出能水解幾丁質的Clostridium perfringens,並試驗能使其產生幾丁質酶的最適培養基,再純化此酵素與探討其特性。此菌無需幾丁質或類似物的誘導,能在主要含蛋白腖及酵母萃之培養基中,於厭氧條件下在37℃培養至25小時後,產生活性最高之幾丁質酶。將粗酵素液先以硫酸銨沉澱,再經透析、濃縮及DEAE管柱及HIC管柱層析處理,可獲得兩種幾丁質酶(P-1及P-2)。此二幾丁質酶均能同時水解4-methylumbellifery-N-acetylchitobiose [4-MU-(NAG)2]與4-methylumbellifery-N-acetylchitotriose [4-MU-(NAG)3]。經Sephacryl S-300與SDS-PAGE檢定,P-1具有分子量139.7 kDa,由兩個次單元(87.3及52.5 kDa)構成;而P-2具有分子量196.8 kDa,亦由兩種次單元(97及49.9 kDa)構成。由於在溫度與pH穩定度、最適作用溫度及pH、和金屬離子致活上具有非常類似的特性,因此推測此二者應為同一種蛋白質。在同樣條件下,培養本菌至96小時後,收集粗酵素液,再以相同步驟處理粗酵素液,於DEAE管柱層析下,僅得一個具有水解幾丁質活性的波峰。再以HIC管柱層析後,獲得幾丁質酶(A-4)。幾丁質酶A-4經SDS-PAGE檢定後,可得一個單一蛋白帶,分子量為75 kDa,且仍同樣具有水解4-MU-(NAG)2與4-MU-(NAG)3之特性。以4-MU-(NAG)2為受質時,最適反應溫度為40℃,最適pH為6.0,Km值為0.14 mM,Vmax值為416.67 nmole/ min/ mg;以4-MU-(NAG)3為受質時,最適反應溫度為50℃,最適pH亦為6.0,Km值為0.34 mM,Vmax值為384.62 nmole/ min/ mg。以4-MU-(NAG)2或4-MU-(NAG)3為受質時,A-4僅受dithiothreitol與2-iodoacetamide1 (1 mM)致活;iodoacetic acid與phenyl methyl sulfonyl fluoride則會抑制其活性;金屬離子Fe2+、Fe3+或Hg+2也會抑制A-4的活性,而Ba2+、Ca2+、Cu2+、K+、Mg2+、Mn2+或Na+僅會活化該酵素水解4-MU-(NAG)2。幾丁質酶A-4水解不同來源幾丁質時,產物以N-乙醯幾丁二糖為主,且其中以水解β-form的魷魚鞘幾丁質為最有效率。由於粗酵素液中尚有其他酵素,能將幾丁質酶P-1與P-2修飾成A-4,而幾丁質酶A-4則為本菌最後穩定的幾丁質酶。
Abstract

This research was conducted to isolate chitinolytic Clostridium perfringens from human feces, to develop a medium that rendered the bacterium to produce higher chitinase activity, and to purify and characterize the chitinase(s) produced by the bacterium. A medium mainly containing peptone and yeast extract was employed to cultivate the bacterium for production of higher chitinase activity after cultivation (37℃) for 25 h at anaerobic condition. When the proteins in crude enzyme solution of C. perfringens were precipitated by ammonium sulfate and then followed by dialysis, condensation and gel filtration, two chitinases (P-1 and P-2) were fractionated. Both chitinases could hydrolyse 4-methylumbellifery-N-acetylchitobiose [4-MU-(NAG)2] and 4-methylumbellifery-N-acetylchitotriose [4-MU-(NAG)3]. After the chromatography using Sephacryl S-300 and SDS-PAGE, chitinase P-1 revealed the molecular weight of 139.7 kDa composed of two subunits (87.9 and 52.4 kDa); P-2 showed the molecular weight of 196.8 kDa composed of two subunits (97 and 49.9 kDa). Due to the similar characteristics on the stabilities of reaction temperatures and pHs and the activation of metal ions, both enzymes were supposed to be the same protein. When the bacterium was incubated at the same condition for 96 h and the crude enzyme solution was dealt with the same treatments, there was only a chitinolytic peak revealed on DEAE or HIC chromatography, which was coded as chitinase A-4. The molecular weight of A-4 was 75 kDa and could hydrolyse both 4-MU-(NAG)2 and 4-MU-(NAG)3. Using 4-MU-(NAG)2 as a substrate, the optimum reaction temperature was 40℃ and the values of Km and Vmax were 0.14 mM and 416.67 nmole/ min/ mg, respectively; while using 4-MU-(NAG)3 as the substate, the optimum reaction temperature was 50℃, and Km and Vmax values were 0.34 mM and 384.62 nmole/ min/ mg, respectively. When using both substrates above-mentioned, the optimum reaction pH was the same (6.0) and the enzyme activity was enhanced by dithiothreitol or 2-iodoacetamide (1 mM), but inhibited by iodoacetic acid, phenyl methyl sulfonyl fluoride, Fe2+, Fe3+ or Hg2+. However, Ba2+, Ca2+, Cu2+, K+, Mg2+, Mg2+, Mn2+ or Na+ could only activate chitinase A-4 to hydrolyse 4-MU-(NAG)2. N-acetychitobiose [(NAG)2] was the main chitinolytic product when A-4 was employed to hydrolyse chitins from different sources. Among them, the highest quality of (NAG)2 was obtained from squid pen chitin after hydrolysation. Due to the existence of other enzymes in the crude enzyme solution, chitinase P-1 and P-2 could be modified to form A-4. Consequently, A-4 was the final stable chitinase of C. perfringens.
目錄
頁次
中文摘要………………………………………………………………… I
英文摘要………………………………………………...……………….. III
ㄧ、前言………………………………………………………………….1
二、文獻整理………………………………………………………………3
1. 產氣莢膜桿菌(Clostridium perfringens)……………………………..3
(1) 分類地位…………………………………………………………….3
(2) 自然棲息地………………………………………………………….3
(3) 型態………………………………………………………………….3
(4) 培養特性…………………………………………………………….3
(5) 生化特性…………………………………………………………….6
(6) 致病及症狀…………………………..………………………….6
2. 幾丁質和N-乙醯幾丁寡醣……………………………………………7
(1) 分布與特性………………………………………………………….7
(2) 製備……………………………………………………………… ..10
3. 幾丁質酶……………………………………………………………...11
(1) 幾丁質酶的天然分佈……………………………………………...11
(2) 幾丁質酶的分類…………………………………………………...13
(3) 幾丁質酶的水解模式……………………………………………...14
(4) 幾丁質酶的轉醣特性……………………………………………...16
(5) 幾丁質酶的結構…………………………………………………...17
(6) 幾丁質酶與溶菌酶的比較………………………………………...19
(7) 幾丁質酶活性的測定…………………………………………….21
a. 傳統方法………………………………………………………….21
b. 快速檢測法……………………………………………………….23
(8) 幾丁質酶的純化…………………………………………………...24
4. 動物體內消化幾丁質的情形………………………………………...25
(1) 動物體中具幾丁質酶活性的分佈情形…………………………...25
(2) 幾丁質對動物消化道中微生物生長的影響……………………...27
(3) 幾丁質及N-乙醯幾丁寡醣的免疫活性………………………28
三、實驗流程………………………………………………………31
四、材料與方法……………………………………………………………32
1. 材料…………………………………………………………………...32
(1) 有機溶劑…………………………………………………………...32
(2) N-乙醯幾丁寡醣標準品……………………………………………32
(3) 酵素基質…………………………………………………………...32
(4) 電泳試劑…………………………………………………………...33
(5) 層析膠體…………………………………………………………...33
(6) 酸、鹼及鹽類……………………………………………………….34
(7) 培養基……………………………………………………………...34
(8) 其他………………………………………………………………...34
2. 設備…………………………………………………………………...35
(1) 厭氧菌培養………………………………………………………...35
(2) HPLC設備及管柱規格…………………………………………….35
(3) FPLC設備…………………………………………………………..35
(4) 蛋白質電泳………………………………………………………...36
(5) 其他………………………………………………………………...36
3. 方法…………………………………………………………………...36
(1) 培養基的製備……………………………………………………...36
a. Tryptose-sulfite-D-cycloserine agar………………………………...36
b. 添加不同量膠體幾丁質於brain heart infusion broth…………….37
c. 添加不同量膠體幾丁質於peptone yeast medium……………...38
d. 添加不同量膠體幾丁質於salt medium……………..…………...38
(2) 膠體幾丁質的製備………………………………………………...39
(3) 糞便取樣與菌株分離……………………………………………...40
(4) 菌株保存…………………………………………………………...40
(5) 菌株活化…………………………………………………………...40
(6) 幾丁質酶活性分析………………………………………………...40
a. 反應試劑的製備…………………………………………………...40
b. 酵素的反應步驟………………………………………………….41
(7) 粗酵素液的製備…………………………………………………...41
(8) 利用硫酸銨分劃粗酵素液中的蛋白質…………………………...41
(9) 透析………………………………………………………………...41
(10) 超過濾膜濃縮…………………………………………………...42
(11) 蛋白質定量……………………………………………………...42
(12) 弱陰離子交換樹酯 (DEAE fast flow)的層析步驟……………..42
a. 層析(Chromatography)…………………………………………….42
b. 樹酯再生(Regeneration)…………………………………………...42
(13)疏水性基交換樹脂 (Phenyl sepharose 6 fast flow)的層析步驟………………………………………………………..……43
a. 層析………………………………………………………………...43
b. 樹酯再生…………………………………………………………...43
(14) 電泳分析………………………………………………………….43
a. Native-PAGE膠體製備…………………………………………….44
b. 5× sampling buffer………………………………………………..44
c. Native-PAGE electrophoresis buffer………………………………..44
d. 幾丁質酶膠體活性染色…………………………………………...44
e. SDS-PAGE膠體製備……………………………………………….45
f. 5× SDS sampling buffer…………………………………………..45
g. SDS-PAGE electrophoresis buffer……………………….................45
h. SDS-PAGE staining solution…………………………………..46
i. SDS-PAGE destaining solution……………………………………...46
(15) 幾丁質酶性質的試驗…………………………………………….46
a. 幾丁質酶分子量的測定…………………………………………...45
b. 溫度影響酵素活性的測定………………………………………...46
(i). 最適作用溫度…………………………………………………...46
(ii). 不同溫度下之穩定性…………………………………………..46
c. pH影響酵素活性的測定…………………………………………...47
(i). 最適作用pH值………………………………………………….47
(ii). 不同pH值下的穩定性…………………………………………47
d. 金屬離子對酵素活性的試驗……………………………………...47
e. 化學試劑對酵素活性的試驗……………………………………...48
(16) 水解產物的分析………………………………………………….48
a. 流動相液體的製備………………………………………………...48
b. N-乙醯幾丁寡醣標準品的製備…………………………................48
c. 酵素水解不同來源幾丁質與水解後產物的製備………………...49
d. HPLC的分析條件…………………………………………………49
(17) 酵素動力學的測定……………………………………………….49
(18) 溶菌酶活性的測定……………………………………………….49
(19) 醣蛋白之鑑別………………………………………………...50
(20) 胺基酸比對…………………………………………………….....50
4. 統計分析…………………………………………………………...50
五、結果…………………………………………………………………..51
六、討論…………………………………………………………………....56
七、結論…………………………………………………………………..98
八、參考文獻……………………………………………………………..99
附錄………………………………………………………………………112



















圖目錄
圖1.自人體糞便中篩出的C. perfringens在含蛋黃的TSA agar上之菌落型態。…………………………………………………………....64
圖2. C. perfringens在添加不同量的膠體幾丁質的BHI medium培養,產生幾丁質酶[以4-MU-(NAG)2為受質]的情形。…………...……….65
圖3. C. perfringens在添加不同量的膠體幾丁質的PY medium培養,產生幾丁質酶[以4-MU-(NAG)2]為受質的情形。…………………....66
圖4. C. perfringens以添加1% (w/ v) yeast extract的salts medium培養,產生幾丁質酶[以4-MU-NAG、4-MU-(NAG)2或4-MU-(NAG)3為受質]的情形。…………………………………….…………67
圖5. C. perfringens以添加0.1% (w/ v)膠體幾丁質的salts medium培養,產生幾丁質酶[以4-MU-NAG、4-MU-(NAG)2或2-MU-(NAG)3為受質]的情形。…………………………………………………….68
圖6. C. perfringens以添加0.3% (w/ v)膠體幾丁質的salts medium培養,產生幾丁質酶[以4-MU-NAG、4-MU-(NAG)2或2-MU-(NAG)3為受質]的情形。………………………………………………….69
圖7. C. perfringens以添加0.5% (w/ v)膠體幾丁質的salts medium培養,產生幾丁質酶[以4-MU-NAG、4-MU-(NAG)2或2-MU-(NAG)3為受質]的情形。………………………………………………….70
圖8. C. perfringens以PY medium培養,產生幾丁質酶[以4-MU-NAG、4-MU-(NAG)2或4-MU-(NAG)3為受質]的情形。……………….71
圖9. C. perfringens幾丁質酶[4-MU-(NAG)2或4-MU-(NAG)3為受質]的DEAE管柱層析圖。………………………………………………72
圖10. C. perfringens幾丁質酶P-1[4-MU-(NAG)2或4-MU-(NAG)3為受質]的HIC管柱層析圖。…………………………………………73
圖11. C. perfringens幾丁質酶P-2[4-MU-(NAG)2或4-MU-(NAG)3為受質]的HIC管柱層析圖。…………………………………………74
圖12. C. perfringens幾丁質酶P-1與P-2在Native-PAGE分析之活性染色。…………………………………………………………...76
圖13. C. perfringens幾丁質酶P-1與P-2以SDS-PAGE分析之電泳圖。……………………………………………………..………..77
圖14. C. perfringens幾丁質酶P-1與P-2分子量測定檢量曲線。…………………………………………………………….78
圖15. C. perfringens幾丁質酶A-4 [以4-MU-(NAG)2或4-MU-(NAG)3為受質]的DEAE管柱層析圖。………………………………81
圖16. C. perfringens幾丁質酶A-4 [以4-MU-(NAG)2或4-MU-(NAG)3為受質]的HIC管柱層析圖。…………………………………82
圖17. C. perfringens幾丁質酶A-4在Native-PAGE分析之活性染色。84
圖18. C. perfringens幾丁質酶A-4以SDS-PAGE分析之電泳圖。……………………………………………..…………...85
圖19. 溫度對C. perfringens幾丁質酶A-4活性之影響。…………….86
圖20. C. perfringens幾丁質酶A-4自不同溫度下之安定性。…………87
圖21. pH對C. perfringens幾丁質酶A-4活性之影響。………………88
圖22. C. perfringens幾丁質酶A-4自不同pH下之安定性。……………89
圖23. C. perfringens幾丁質酶A-4之酵素動力學分析圖。……………93
圖24. C. perfringens幾丁質酶A-4胜肽片段胺基酸序列之比對。…….96
附錄圖1. C. perfringens幾丁質酶A-4水解蝦殼幾丁質24及48小時後,以HPLC分析其水解產物。……………………………...112
附錄圖2. C. perfringens幾丁質酶A-4水解蟹殼幾丁質24及48小時後,以HPLC分析其水解產物。……………………………..113
附錄圖3. C. perfringens幾丁質酶A-4水解膠體幾丁質24及48小時後,以HPLC分析其水解產物。……………………………..114
附錄圖4. C. perfringens幾丁質酶A-4水解魷魚鞘幾丁質24及48小時後,以HPLC分析其水解產物。……………………………..115
























表目錄
表1. C. perfringens幾丁質酶P-1與P-2純化摘要。……………………...75
表2. C. perfringens幾丁質酶P-1與P-2性質。…………………………...79
表3. C. perfringens幾丁質酶P-1與P-2之比較。………………………...80
表4. C. perfringens幾丁質酶A-4純化摘要。………………………….74
表5. 不同濃度之金屬離子對C. perfringens chitinase A-4分別以4-MU-(NAG)2與4-MU-(NAG)3為受質時,活性之影響。……….90
表6. 化學試劑對C. perfringens幾丁質酶A-4活性之影響。…………...91
表7. C. perfringens幾丁質酶A-4對4-MU共軛受質水解特性。………..92
表8. C. perfringens幾丁質酶A-4對不同來源幾丁質經24與48小時水解後之產物分析。……………………………………..…………...94
表9. C. perfringens幾丁質酶A-4以Micrococcus lysodeiticus BCRC 13079為受質時,溶菌酶活性之測定。…………………………….95
表10. C. perfringens幾丁質酶P-1、P-2與A-4之比較。…………….97
八、參考文獻
方繼、李根永、李清福、林建谷、林順富、范晉嘉、陳惠英、虞積凱、蔡國珍編譯。1999。現代食品微生物學/ James M. Jay原著,492-501。偉明出版,台灣。
高逸馨。2000。人類糞便中幾丁質水解菌之分離與鑑定及幾丁質酶之純化。國立台灣海洋大學食品科學研究所碩士論文。
陳幸臣。1998。水產微生物實驗法。華香園出版,台灣。
陳宛晸。2001。以膠狀幾丁質為原始碳源生產發酵豆奶之研究。國立台灣海洋大學食品科學研究所碩士論文。
粱舜欣。1990。N-乙醯幾丁寡醣之製備。國立台灣大學農業化學研究所碩士論文。
黃安得。1998。利用部份純化之Amycolatopsis orientalis細胞外N-乙醯葡萄糖胺酶製備N-乙醯幾丁寡醣。國立台灣海洋大學水產食品科學研究所碩士論文。
張詔欽。2000。N-乙醯幾丁寡醣的製備與純化及其對腸內細菌生長的影響。國立台灣海洋大學食品科學研究所碩士論文。
葉民煉。1995。Alteromonas haloplanktis K-12幾丁質酶的純化與特性研究。國立台灣海洋大學水產食品科學研究所碩士論文。
賴淑琪。1979。水產廢棄物蝦、蟹外殼之高度利用。食品工業11: 23-28。
Ahmad, F. J. and J. H. Darrell. 1976. Significance of the isolation of Clostridium welchii from routine blood culture. J. Clin. Pathol. 29: 185-186.
Aalten, D. M. F., D. Komander, B. Synstard, S. Gaseidnes, M. G. Peter, and V. G. Eijsink. 2001. Structure insight into the catalytic mechanism of a family 18 exo-chitinase. PNAS 98(16): 8979-8984.
Aiba, S. 1994. Preperation of N-acetylchitooligosaccharides from lysozymic hydrolysates of partially N-acetylated chitosans. Carbohydr. Res. 261: 297-306.
Aiba, S. and E. Muraki. Preparation of higher N-acetylchitooligo- saccharides in high yields. In: Advances in Chitin Science (R. H. Chen and H. C. Chen Ed). 3: 89-96. Rita Advertising Co, ROC.
Andrews, S. C., P. M. Harrison, and J. R. Guest. 1989. Clonig, sequencing, and mapping of the bacterioferritin gene (bfr) of Escherichia coli K-12. J. Bacteriol. 171: 3940-3947.
Armand, S., H. Tomita, A. Heyraud, C. Gey, T. Watanabe, and B. Henrissat. 1994. Stereochemical course of the hydrolysis reaction catalyzed by chitinase A1 and D from Bacillus circulans WL-12. FEBS Lett. 343: 177-180.
Arora, N., T. Ahmad, R. Rajagopal, and R. K. Bhatnagar. 2003. A constitutively expressed 36kDa exochitinase from Bacillus thuringiensis HD-1. Biochem. Biophys. Res. Commun. 307(3):620-5.
Austin, P. R. 1988. Chitin solutions and purification of chitin. Enzymol. Methods 161: 403-407.
Barnes, E. and M. Ingram. 1956. The effect of redox potential on the growth of Clostridium welchii strains isolated from horse muscle. J. Appl. Bacteriol. 19: 117-128.
Barker, S. A., A. B. Foster, M. Stacey, and J. M. Webber. 1958. Amino-sugars and related compounds. Part IV. Isolation and fragmentation of chitin. J. Chem. Soc. 2218-2230.
Begoňa, A., K. G. D. Vlugt, M. T. J. Helmond, J. M. M. Out, W. E. D. Koopman, J. E. M. Groener, R. G. Boot, H. S. Overleeft, and J. M. F. G. Aerts. 2003. Transglycosidase activity of chitotriosidase. J. Biol. Chem. 278(42): 40911-40916.
Bhushan, B. 2000. Production and characterization of a thermostable chitinase from a new alkalophilic Bacillus sp. BG-11. J. Appl. Microbiol. 88: 800-808.
Bough, W. A., W. L. Sulter, A. C. M. Wu, and B. E. Perdins. 1978. Influence of manufacturing variables on the characteristics and effectivemess of chitosan products. I. Chemical composition, viscosity, and molecular-weight distribution of chitosan products. Biotech. Bioeng. 20: 1931-1943.
Boyer, J. N. 1986. End products of anaerobic chitin degradation by salt marsh bacteria as substrates for dissimilatory sulfate reduction and methanogensis. Appl. Environ. Microbiol. 52: 1415-1418.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitative of microgram quantities of protein using principle of protein-dye binding. Anal. Biochem. 72: 248-254.
Broadway R. M., D. L. Williams, W. C. Kain, G. E. Harman, M. Lorito, and D. P. Labeda. 1995. Partial characterization of chitinolytic enzymes from Streptomyces albidoflavus. Lett. Appl. Microbiol. 20(5): 271-276.
Brameld, K. A. and W. A. Goddard III. 1998. The role of enzyme distortion in the single displacement mechanism of family 19 chitinase. Pro. Natl. Sci. 95: 4276-4281.
Brameld, K. A., W. D. Sharader, B. Imperiali, and W. A. Goddard III. 1998. Substrate assistance in the mechanism of family 18 chitinases: theoretical studies of potential intermediates and inhibitors. J. Mol. Biol. 280: 913-923.
Buchter R, A. Stromberg, E. Schmelzer, and E. Kombrink. 1997. Primary structure and expression of acidic (class II) chitinase in potato. Plant Mol Biol. 35(6):749-61.
Chen, H. C., C. C. Chang, W. J. Mau, and L. S. Yen. 2002. Evaluation of N-acetylchitooligosaccharides as the main carbon sources of the growth of intestinal bacteria. FEMS Microbiol. Lett. 209: 53-56.
Chen, K. S., K. K. Lee, and H. C. Chen. 1994. A rapid method for detection of N-acetylglucosamindase-type chitinase activity in crossed immunoelectrophoresis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels using 4-methylumbelliferyl-N-acetyl-D- glusaminide as substrate. Electrophoresis 15: 662-665.
Chen, S. H. and H. C. Chen. 1999. Effect of oral administration of Cellulomonas flavigena NTOU 1-degraded chitin hydrolysate on physiological changes in rats. Food Sci. Agri. Chem. 1(3): 186-193.
Cherniak, R. and H. M. Frederick. 1977. Capsular polysaccharide of Clostridium perfringens Hobbs. Infect. Immun. 15: 765-771.
Cira, L. A., S. Huerta, G. M. Hall, and K. Shirai. 2002. Pilot scale lactic acid fermentation of shrimp wastes for chitin recovery. Process Biochem. 37: 1359-1366.
Clark, J., K. A. Quayle, N. L. Macdonald, and J. R. Stark. 1988. Metabolism in marine flatfish-V. chitinolytic activities in dover sole, Solea solea (L.). Comp. Biochem. Physiol. 90B: 379-384.
Cummins, C. S. and J. L. Johnson. 1971. Taxonomy of the clostridia: wall composition and DNA homologies in Clostridium butyricum and other butyric acid-producing clostridia. J. Gen. Microbiol. 67: 33-46.
Davies, G. M. 1969. Recognition memory for pictured and named objects. J Exp. Child Psychol. 7: 448-458.
Davies, G. and B. Henrissat. 1995. Structures and mechanisms of glycosyl hydrolases. Structure 3: 853-859.
Defaye, J., A. Gadelle, and C. Pedersen. 1989. Chitin and chitosan oligosaccharide. In Chitin and Chitosan. (G. Sajak-Brek, T. Anthonsen, and P. Sandford Ed). 415-429. Elsevier Science Publishers Ltd, England.
de la Cruz, J., A. Hidalgo-Gallego, J. M. Lora, T. Benitez, J. A. Pintor-Toro, A. Llobell, and M. V. Deshpande. 1986. Enzymatic degradation of chitin and its biological applications. J. Scientific Industrial Res. 45: 273-281.
Deshpande, M. V. 1986. Enzymatic degradation of chitin and its biological applications. J. Scientific Industrial Res. 45: 273-281.
Deuchi, K., O. Kanauchi, M. Shizukuishi, and E. Kobayashi. 1995. Continuous and massive intake of chitosan effects mineral and fat-soluble vitamin status in rate on a high fat diet. Biosci. Biotechnol. Biochem. 59:1211-1216.
Deutscher, M. P. 1990. Maintaining protein stability. Meth. Enzymol. 182: 83-89
Drouillard, S., S. Armand, G. J. Davies, C. E. Vorgias, and R. Geremia. 1997. Serratia marcescens chitobiase is a retaining glycosidase utilizing substrate acetamido group participation. Biochem. J. 328: 945-949.
Duncan, C. L. and D. H. Strong. 1968. Improved medium for sporulation of Clostridium perfringens. Appl. Microbiol. 16: 82-89.
Dygert, S., L. H. Li, D. Florida, and J. A. Thoma. 1965. Determination of reducing sugar with improved precision. Anal. Biochem. 13: 367-374.
Fabrizia, F., H. V. Moeller, A. Houston, H. J. Rozeboom, B. W. Dijkstra, R. G. Boot, J. M. F. G. Aerts, and D. M. F. V. Aalten. 2002. Structure of human chitotriosidase. J. Biol. Chem. 277(28): 25537-25544.
Falk, J. E. 1963. Chemistry and biochemistry of porphyrins and metallopophyrins. Comprehensive Biochemist (Flookin and Stotz Ed). 2-7. Elsevier, New York.
Frandberg, E. and J. Schnurer. 1994b. Evaluation of a chromogenic chito-oligosaccharide analogue, ρ-nitrophenyl-β-D-N, N’-diacetylchitobiose, for the measurement of the chitinolytic activity of bacteria. J. Appl. Bacteriol. 76: 259-263.
Fukamizo, Z. 2000. Chitinolytic enzyme: catalysis, substrate bing, and their application. Curr. Pro. Peptide Sci. 1(1): 105-124.
Gijzen, M., K. Kuflu, D. Qutob, and J. T. Chernys. 2001. A class I chitinase from soybean seed coat. J. Exp. Bot. 52(365): 2283-2289.
Gorbach, V. I., I. N. Krasikova, P. A. Lukyanov, Y. N. Loenko, T. F. Solovera, Y. S. Ovodov, V. V. Deev, and A. A. Pimenov. 1994. New glycolipids (chitooligosaccharide derivatives) possessing immunostimulating and antitumor activities. Carbohydr. Res. 260: 73-78.
Guoqing, X., C. Jin, J. Zhou, S. Yang, S. Zhang, and C. Jin. 2001. A novel chitinase having a unique mode of action from Aspergillus fumigatus YJ-407. Eur. J. Biochem. 268: 4079-4085.
Hahn, M., M. Hennig, B. Schlesier, and W. Hohne. 2000. Structure of jack bean chitinase. Acta Crystallogr D Biol. Crystallogr. 56 (9): 1096-1099.
Harrowfield, J. 2001. Metal ion catalysis in biology – metalloenzyme function. Lecture notes biological inorganic chemistry.
Hauschild, A. H. W., R. Hilsheimer, and D. W. Griffith. 1974. Enumeration of fecal Clostridium perfringens spores in egg yolk-free tryptose-sulfite-cycloserine agar. Appl. Microbiol. 27: 527-530.
Hearn, V. M., G. M. Escott, E. Glyn, V. Evans, and D. J. Adams. 1998. Complex chitinolytic system of Aspergillus fumigatus. Microbiol. 93(375): 85-104.
Henrissat, B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 280 (2): 309-316.
Henrissat, B. 1999. Classification of chitinases modules. EXS. 137-156.
Hideaki, Y., H. Hayashi, S. Karita, T. Kimura, K. Sakka, and K. Ohmiya. 1999. Purification and some properties of a chitinase from Xanthomonas sp. Strain AK. J. Biosci. Bioeng. 3: 328-330.
Hood, M.A. 1991. Comparison of four methods for measuring chitinase activity and the application of the 4-MUF assay in aquatic environments. J. Microbiol. Methods 13: 151-160.
Howard, M. B., N. A. Ekborg, L. E. Taylor II, R. M. Weiner, and S. W. Hutcheson. 2003. Chitinase B of “Microbulbifer degradans” 2-40 contains two catalytic domains with different chitinolytic activities. J. Bacteriol. 186 (5): 1297-1303.
Hsu, F. J. and H. C. Chen. 1987. A study on the processing of marine sauce. J. Fish. Soc. Taiwan 14: 90-103.
Ilyina, A. V., V. P. Varlamov, V. E. tikhonov, I. A. Yamskov, and V. A. Davankov. 1994. One-step isolation of a chitinase by affinity chromatography of chitinolytic enzyme complex produced by Streptomyces kurssanovil. Biotechnol. Appl. Biochem. 19: 199-207.
Imoto, T. and K. Yagishita. 1971. A simple activity measurement of lysozyme. Agr. Biol. Chem. 35: 1154-1156.
Inglis, A. S. 1983. Single hydrolysis method for all amino acids, including cysteine and tryptophan. Meth. Enzymol. 91: 26-36.
Itoh, Y., K. Takahashi, H. Takizawa, N. Nikaidou, H. Tanaka, H. Nishihashi, T. Watanabe, and Y. Nishizawa. 2003. Family 19 chitinase of Streptomyces griseus HUT6037 increases plant resistance to the fungal disease. Biosci. Biotechnol. Biochem. 67(4):847-55.
Izume, M., S. Nagae, H. Kawagishi, and A. Ohtakara. 1992. Preparation of N-acetylchitooligosaccharides from enzymatic hydrolysis of chitosan. Biosci. Biotech. Biochem. 56: 1327-1328.
Jenuiaux, C. 1966. Chitinase. Methods Enzymol. 8: 644-650.
John, S. N. and K. J. Vijay. 2002. Clostridium perfringens: hazards in new generation foods. Innovative Food Sci. Energing Technol. 3: 127-132.
Kim, K. J., Y. J. Yang, and J. G. Kim. Purification and characterization of chitinase from Streptomyces sp. M-20. J. Biochem. Mol. Biol. 36(2): 185-189.
Kirsch, C., K. Hahlbrock, and E. Kombrink. 1993. Purification and characterization of extracellular acidic chitinase isoenzymes from elicitor-stimulated parsley cells. Eur. J. Biochem. 213(1):419-425.
Kirshnaveni, S., G. H. Liang, S. Muthukrishnan, and A. Manickam. 1999. Purification and partial characterization chitinass from sorghum seeds. Plant Sci. 144: 1-7.
Knorr, D. 1986. Nutritional quality, food processing, and biotechnology aspects of chitin and chitosan: a review. Proc. Biochem. 6: 90-92.
Koga, D., M. Mitsutomi, M. Kono, and M. Matsumiya. 1999. Biochemistry of chitinse. Chitin and Chitinase ed by P. Jollés and R. A. A. Muzzarelli © Birhäuser Verlag Base/ Switzerland.111-123.
Kono, M., T. Matsui, C. Shimizu, and D. Koga. 1990. Purification and some properties of chitinase from the stomach of Japanese eel, Anguilla japonica. Agtic. Biol. Chem. 54: 973-978.
Kono, M., T. Matsui, and C. Shimizu. 1987. Effect of chitin, chitosan and cellulose as diet supplements on the growth of cultured fish’ in Nippon Suisan Gakkaishi 53: 125-129.
Kopečný, J., B. Hodrovă. 2000 Chitinolytic enzymes produced by ovine rumen bacteria. Folia Microbiol. 45(5): 465-468.
Kopečný, J., B. Hodrovă, and C. S. Stewart. 1996. The isolation and characterization of a rumen chitinolytic bacterium. Lett. Appl. Microbiol. 23: 195-198.
Kramer, K. J. and D. Koga. 1986. Insect chitin: physical state, synthesis degradation and metabolic regulation. Insect Biochem. 16: 851-877.
Kurita, K., K. Tomita, T. Tada, S. Ishii, SI. Nishimura, and K. Shimoda. Squid chitin as a potential alternative chitin source: Deacetylation behavior and characteristic properties. J. Polymer Sci. A 31: 485-491.
Laetitia, P., M. Gibert, and M. R. Popoff. 1999. Clostridium perfringens: toxinotype and genotype. Trends Microbiol. 7(3): 104-110
Lee, H. S., D. S. Han, S. J. Choi, S. W. Choi, D. S. Kim, D. H. Bai, and J. H. Yu. 2002. Purification, characterization, and primary structure of a chitinase from Pseudomonas sp. YHS-A2. Appl. Microbiol. Biotechnol. 54(3): 397-405.
Lee, L. and R. Cherniak. 1974. Capsular polysaccharide of Clostridium perfringens Hobbs 10. Infect. Immun. 9: 318-322.
Li, H., K. Morimoto, N. Katagiri, T. Kimura, K. Sakka, S. Lun, and K. Ohmiya. 2002. A novel beta-N-acetylglucosaminidase of Clostridium paraputrificum M-21 with high activity on chitobiose. Appl. Microbiol. Biotechnol. 60(4): 420-427.
Majeau, N., J. Trudel, and A. Asselin. 1990. Diversity of cucumber chitinase isoform and characterization of one seed basic chitinase with lysozyme activity. Plant Sci. 68:9-16.
Manson, F. 1964. Comparative Biochem. 7: 93.
Manson, F. D., G. W. Gooday, and T. C. Fletcher. 1989. The development of gastric and blood chitinase activity in the turbot, Scophthalmus maximus (L.). In chitin and chitosan. (G. Skjak-Brek, T. Anthonsen and P. Sandford. Ed). 254-253. Elsevier Science Publishers Ltd, England.
Matsumiya, M. and A. Mochizuki. 1995. Purification and some properties of chitinase from the stomach of common mackerel Scomber japonicus. Bull. Coll. Agr. Vet. Med. Nihon Univ. 52: 131-136.
Mauch, F and L. A. Staehelin. 1989. Functional implications of the subcellular localization of ethylene-induced chitinase and [beta]-1,3-glucanase in bean leaves. Plant Cell. 1(4): 447-457.
Mayer R. T, T. G. McCollum, R. P. Niedz, C. J. Hearn, R. E. McDonald, E. Berdis, and H. Doostdar. 1996. Characterization of seven basic endochitinases isolated from cell cultures of Citrus sinensis (L.). Planta. 200(3): 289-295.
McCreath, K. J. and Gooday, G. W. 1992. A rapid and sensitive microassay for determination of chitinolytic activity. J. Microbiol. Methods. 14: 229-237.
McCreath, K. J., C. A. Specht, and P. W. Robbins. 1995. Molecular cloning and characterization of chitinase genes from Candida albicans. Proc. Natl. Acad. Sci. USA 92(7): 2544-2548.
Mega T, T. Ikenaka, and Y. Matsushima. 1972. Studies on N-acetyl- -D-glucosaminidase of Aspergillus oryzae. 3. Transglycosylation by the enzyme and preparation of crystalline phenyl N, N'-diacetyl- -chitobioside. J. Biochem. (Tokyo) 72(5): 1197-1203.
Mega T, T. Ikenaka, H. Arita, K. Fukukawa, and Y. Matsushima. 1973. Studies on N-acetyl-D-glucosaminidase of Aspergillus oryzae. V. Demonstration of an exo-type of the enzyme and determination of partial binding energy of the ES-complex. J. Biochem. (Tokyo) 73(1): 55-60.
Mellor, K. J., R. O. Nicholas, and D. J. Adams. 1994. Purification and characterization of chitinase from Candida albicans. FEMS Microbiol. Lett. 119: 111-117.
Miller, G. C. 1959. Use of dinitrosalicylic acid reagent for determination of reducing suga. Anal. Chem. 31: 426-428.
Minic, Z., S. Brown, Y. D. E. Kouchkovsky, M. Schultze, and C. Staehelin. 1998. Purification and characterization of a novel chitinase-lysozyme, of another chitinase, both hydrolying Rhizobium meliloti Nod factors, and of a pathogenesis-related protein from Medicago sativa roots. Biochem. J. 322: 329-325.
Molano, J., I. Polacheck, A. Duran, and E. Cabib. 1979. An endochitinase from wheat germ. J. Biol. Chem. 254: 4901-4907.
Morgan, W. T. J. and L. A. Elson. 1934. Acolorimetric method for the determination of N-acetylglucosamine and N-acetylchondrosamine. Biochem. J. 28: 988-995.
Muzzarelli, R. A. A. 1977. Chitin. Pergamon Press, Oxford.
Nagel, R., R. G. Birch, and J. M. Manner. 1990. Detection of bacterial chitinase activity in transformed plant tumor cells using a specific exochitinase substrate. Plant Cell Reports㎝ 8: 729-732.
Nawani, N. N. and B. P. Kapadnis. 2001. One-step purification of chitinase from Serritia marcescens NK1 a soil isolate. J. Appl. Microbiol. 90: 803-808.
O’Brien, M. and R. R. Colwell. 1987. A rapid test for chitinase activity that uses 4-methylumbelliferyl-N-acetyl-β-D-glucosaminide. Appl. Environ. Microbiol. 53: 1718-1720.
Oh, Y., I. I. Shih, Y. Tzeng, and S. Wang. 2000. Protease produced by Pseudomonas aeruginosa K-187 and its application in the deproteinization of shrimp and crab shell wastes. Enzyme Microbial Technol. 27(1-2): 3-10.
Olesen, M. A., A. S. Blix, T. H. A. Utsi, W. Sormo, and S. D. Mathiesen. 2000. Chitinolytic bacteria in the minke whale forestmoach. Can. J. Microbiol. 46: 85-94.
Ossward, W. F., R. E. Mcdonald, R. P. Niedz, J. P. Shapiro, and R. T. Mayer. 1992. Quantitative fluorometric analysis of plant and microbial chitosanases. Anal. Biochem. 204: 40-46.
Otakara, A. 1961. Studies on the chitinolytic enzymes of black-koji mold. Part Ⅱ. Purification of chitinase. Agric. Biol. Chem. 25: 54-60.
Pel, R., A. J. van den Wijngaard, E. Epping, and J. C. Gottschal. Comparison of the chitinolytic properties of Clostridium sp. strain 9.1 and a chitin-degrading bacterium from the intestinal tract of the plaice, Pleuronectes platessa (L.). J. Gen. Microbiol. 136 (4): 695-704.
Perrakis, A, I. Tews, Z. Dauter, A. B. Oppenheim, I. Chet, K. S. Wilson, and C. E. Vorgias. 1994. Crystal structure of a bacterial chitinase at 2.3 Å resolution. Structure 2: 1169-1180.
Perrakis, A., K. S. Wilson, I. Chet, A. B. Oppenheim, and C. E. Vorgias. 1993. Phylogenetic relationships of chitinases of chitinases. Chitin enzymology. Ancona: Eur Chtin Soc. ( R. A. A. Muzzarelli, Ed). 217-232.
Peter, H. A., S. Sneath, M. Nicholas, and M. Eli Sabeth Sharpe. 1986. Bergey’ s manual of systematic bacteriology 2: 1179-1182.
Place, A. R. 1996. The biochemical basis and ecological significance of chitin digestion. In chitin enzymol., R. A. A. Muzzarelli (Ed)., 2: 39-54. Atec edizioni-Grottammare, Italy.
Ponath, Y., H. Vollberg, K. Hahlbrock, and E. Kombrink. 2000. Two differentially regulated class II chitinases from parsley. Biol. Chem. 381(8): 667-678.
Robbins, P. W., C. Albright, and B. Benfield. 1988. Cloning and expression of a Streptomyces plicatus chitinase (chitinase-63) in Escherichia coli. J. Bacteriol. Chem. 263 (1): 443-447.
Rahman, M. 1978. Free-sporing Clostridium welchii in ordinary laboratory media and conditions. J. Clin. Pathol. 31: 359-360.
Rast, D. M., M. Horsch, R. Furter, and G. W. Gooday. 1991. A complex chitinolytic system in exponentially growing mycelium of Mucor rouxii: properties and function. J. Gen. Microbiol. 137 (12): 2797-2810.
Park, J. K., N. O. Keyhani, and S. Roseman. 2000. Chitin catabolism in the marine bacterium Vibrio furnissii. Identification, molecular cloning, and characterization of a N, N'-diacetylchitobiose phosphorylase. J. Biol. Chem. 275(42): 33077-33083.
Pedraza-Reyes, M. and E. Lopez-Romero. 1989. Purification and some properties of two forms of chitinase from mycelial cells of Mucor rouxii. J. Gen. Microbiol. 135 (1): 211-218.
Reetarani, S. P., V. Ghormade, and M. V. Deshpande. 2000. Chitinolytic enzymes: an exploration. Enzyme Microbial Technol. 26: 473-483.
Reissing, J. L., J. L. Strominger, and L. F. Leloir. 1955. A modification colorimetric method for the estimation of N-acetylaminosugars. J. Biol. Chem. 217: 959-966.
Renkema, G. H., R. G. Boot, A. Strijland, W. E. Donker-koopman, V. D. Berg, A. O. Muijsers, and J. M. F. G. Aerts. 1997. Eur. J. Biochem. 244: 279-285.
Ruegg, U. T. and J. Rudinger. 1977. Cleavage of disulfide bonds in proteins. Meth. Enzymol. 47: 111-115.
Rupley, J. A. 1964. The hydrolysis of chitin concentrated hydrochloric acid, and the preparation of low-molecular-weught substrates for lysozyme. Biochem. Biophys. Acta. 83: 245-255.
Sabapathy, U. and L. H. Teo. 1993. A quantitative study of some digestive enzymes in the rabbitfish, Siganus canaliculatus and the sea bass, Lates calcarifer. J. Fish Biol. 42: 595-602.
Sakai, K., M. Narihara, Y. Kasama, M. Wakayama, and M. Moriguchi. 1994. Purification and characterization of thermostable β-N-acetylhexosaminidase of Bacillus stearothermophilus CH-4 isolated from chitin-containing compost. Appl. Environ. Microbiol. 60: 2911-2915.
Sakai, K., A. Yokota, H. Kurokawa, M. Wakayama, and M. Moriguchi. 1998. Purification and characterization of three thermostable endochitinases of a noble Bacillus strain MH-1, isolated from chitin-containing compost. Appl. Environ. Microbiol. 64(9): 3397-3402.
Sakai, K., M. Narihara, Y. Kasama, M. Wakayama, and M. Moriguchi. 1994. Purification and characterization of thermostable β-N-acetylhexosaminidase of Bacillus stearothermophilus CH-4 isolated from chitin-containing compost. Appl. Environ. Microbiol. 60: 2911-2915.
Sera, H. and K. Okutani. 1968. Studies on chitinolytic enzyme present in aquatic animals-ⅤⅡ. The chitinolytic enzyme present in sea bream, Acanthopagrus schlegedi. Bulletin Jap. Soc. Sci. Fisheries. 34: 920-924.
Shahidi, F., J. K. V. Arachchi, and Y. J. Jeon. 2000. Food applications of chitin and chitosans. Trends Food Sci. Tech. 10(2): 37-51.
Smith, L. DS. 1975. Common mesophilic anaerobes, including Clostridium botulisnum and Clostridium tetani, in 21 soil specimens. Appl. Microbiol. 29: 590-594.
Shimahara, K., K. Ohkouchi, and M. Ikeda. 1982. A new isolation method of crustacean chitin using proteolytic bacterium Pseudomonas maltophilia. In: Chitin and Chitosan. (S. Hirano and S. Tokura. Ed). 10-14. The Japanese Society of Chitin and Chitosan.
Smith, L. DS. 1979. Virulence factors of Clostridium perfringens. Rev. Infect. Dis. 1: 254-260.
Šimŭnek, J., B. Hodrová, H. Bartoňová, and J. Kopečný. 2001. Chitinolytic bacteria of the mammal digestive tract. Folia Microbiol. 46(1): 76-78.
Šimŭnek, J., J. Kopečný, B. Hodrová, and H. Bartoňová. 2002. Idetification and characterization of Clostridium paraputrificum, a chitinolytic bacterium of human digestive tract. Folia Microbiol. 47(5): 559-564.
Stanley, W. L., G. G. Watters, B. Chan, and J. M. Mercer. 1975. Lactase and enzymes bound the chitin with glutaraldehyde. Biotechnol. Bioeng. 17: 315-326.
Sterne, M. and G. H. Warrack. 1964. The types of Clostridium perfringens. J. Pathol. Bacteriol. 88: 279-283.
Suginta, W., P. A. Robertson, B. Austin, S. C. Fry, and L. A. Fothergill-Gilmore. 2000. Chitinases from Vibrio: activity screening and purification of chiA from Vibrio carchariae. J. Appl. Microbiol. 89(1): 76-84.
Sugita, H., J. Kumazawa, and Y. Deguchi. 1996. Production of chitinase and β-N-acetylglucosaminidase by intestinal bacterium of pinnipedian animals. Soc. Appl. Bacteriol. 23: 275-278.
Suzuki, K., A. Tokoro, Y. Okawa, S. Suzzuki, and M. Suzuki. 1985. Enhancing effects of N-acetyl-chito-oligosaccharides on the active oxygen-generating and microbicidal activities of peritoneal exudates cells in mice. Chem. Pharm. Bull. 33: 886-888.
Suzuki, K., T. Mikami, Y. Okawa, A. Tokoro, S. Suzuki, and Suzuki, M. 1986. Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose. Carbohydr. Res. 151: 403-408.
Suzuki, S. T. Watanabe, T. Mikami, T. Mastumoto, and M. Suzuki. 1990. Immuno-enhancing effects of N-acetylchitohexaose and chitohexaose. In Proceeding from the 5th International Conference on Chitin and Chitosan. 96-105. USA.
Sylvain, C., B. Brasme, and H. Driguez. 2000. A fluorescence-quenched chitopentaose for the study of endo-chitinases and chitobiosidases. Eur. J. Biochem. 267: 5593-5600.
Takashi, M., T. Tsukiyama, and T. Suzuki. 1993. Purifications and some properties of chitinase produced by Vibrio sp. J. Ferment. Bioeng. 75: 457-459.
Tanaka, Y., S. I. Tanioke, M. Tanaka, T. Kitamura, S. Minami, S. Minami, Y. Okamoto, M. Miyashita, and M. Nanno. 1997. Effects of chitin and chitosan particles on BALB/c mice by oral and parenteral administration. Biomaterial 18(8): 591-595.
Terayama, H., K. Ahashi. 1989. Isolation and identification of a thermophilic bacterium producing N, N’-diacetylchitobiose from chitin. Agric. Biol. Chem. 53: 1537-1541.
Terwisscha van S., M. Hennig, and B. W. Dijkstra. 1996. The 1.8 Å resolution structure of heavamine, a plant chitinase/ lysozyme and analysis of the conserved sequence and structure motifs of glycosyl hydrolyse family 18. J. Mol. Biol. 262: 243-257.
Tews, I., A. Perrakis, A. B. Oppenheim, Z. Dauter, K. S. Wilson, and C. E. Vorgias. 1996. Bacterial chitobiase structure provides insight into catalytic mechanism and the basis of Tay-Sachs diease. Nat. Struct. Biol. 3: 638-648.
Tokoro, A., M. Kobayashi, N. Tatewaki, K. Suzuki, Y. Okawa, T. Mikami, S. Suzuki, and M. Suzuki. 1989. Protective effect of N-acetylchitohexaose on Listeria monocytogens infection on mice. Microbiol. Immunol. 33: 357-367.
Tokoro, A., N. Tatewaki, K. Suzuki, T. Mikami, S. Suzuki, and M. Suzuki. 1988. Growth-inhibitory effect of hexa-N-acetylchito-hexaose and chitohexaose against meth-A solid tumor. Chem. Pharm. Bull. 36: 784-790.
Toshaki, T., T. Kawase, T. Watanabe, Y. Uchida, and M. Mitsutomi. 2000. Purification and characterization of a 49-kDa chitinase from Streptomyces griseus HUT 6037. J. Biosci. Bioeng. 89(1): 27-32.
Tronsmo, A. and G. E. Harman. 1993. Detection and quantification of N-acetyl-β-D-glucosaminidase, chitobiosidase, and endochitinase in solutions and on gels. Anal. Biochem. 208: 74-79.
Tsukada, K., T. Matsumoto, K. Aizawa, A. Tokoro, R. Naruse, S. Suzuki, and M. Suzuki. 1990. Antimetastatic and growth-inhibitory effects of N-acetylchitohexaose in mice bearing Lewis lung carcinoma. Jan. J. Cancer. Res. 81: 259-265.
Ueda, M., M. Kojima, T. Yoshikawa, N. Mitsuda, K. Araki, T. Kawaguchi, K. Miyatake, M. Arai, and T. Fukamizo. 2003. A novel type of family 19 chitinase from Aeromonas sp. No.10S-24. Cloning, sequence, expression, and the enzymatic properties. Eur. J. Biochem. 270(11): 2513-2520.
Vrba, J., K. Simek, J. Nedoma, and P. Hartman. 1993. 4-Methylumbelliferyl-β-N-acetylglucosaminide hydrolysis by a high-affinity enzyme, a putative marker of protozoan bacterivory. Appl. Environ. Microbiol. 59: 3091-3101.
Wagner, B. and G. Schallehn. 1982. Zur Koloniemorphologie von Clostridium perfringens type A. Zentralbl. Bacteriol. Microbiol. Hyg. I Orig. A 251: 537-544.
Wang, S. L. and W. T. Chang. 1997. Purification and characterization of two bifunctional chitinase/ lysozymes extracellularly produced by Pseudomonase aeruginosa K-187 in a shrimp and crab powder medium. Appl. Environ. Microbiol. 63: 380-386.
Wang, S. L. and S. H. Chio. 1998. Deproteinization of shrimp and crab shell with the protease of Pseudomonas aeruginosa K-187. Enzyme Microbial Technol. 22: 629-633.
Warren, R. A. 1996. Microbial hydrolysis of polysaccharides. Annu Rev. Microbiol. 50: 183-212.
Watanabe, T., W. Oyanagi, K. Suzaki, and H. Tanaka. 1990. Chitinase system of Bacillus circulans WL-12 and importance of chitinase A1 in chitin degradation. J. Bacteriol. 172: 4017-4022.
Watanabe, T., K. Kobooi, K. Miyashita, T. Fujii, H. Sakai, M. Uchida, and H. Tanaka. 1993. Identificayion of glutamic acid 204 and aspartic acid 200 in chitinase A1 of Bacillus circulans WL-12 as essential residues for chitinase ctivity. J. Bio. Chem. 268: 18567-18572.
Watanabe, T., Y. Ito, T. Yamada, M. Hashimoto, S. Sekine, and H. Tanaka. 1994. The roles of the C-terminal domain and type III domains of chitinase A1 from Bacillus circulans WL-12 in chitin degradation. J. Bacteriol. 176: 4465-4472.
Wemmer, T., H. Kaufmann, H. H. Kirch, K. Schneider, F. Lottspeich, and R. D. Thompson. 1994. The most abundant soluble basic protein of the stylar transmitting tract in potato (Solanum tuberosum L.) is an endochitinase. Planta. 194(2): 264-273.
Willis, A. T. 1969. Clostridia of wound infection. Butterworth.490, London.
Woo, C. J. and H. D. Park. 2003. An extracellular Bacillus sp. chitinase for the production of chitotriose as a major chitinolytic product. Biotechnol. Lett. 25(5): 409-412.
Wortman, A. T., C. C. Somerville, and R. P. Colwell. 1986. Chitinase determinants of Vibrio wulnificus: cloning and applications of a chitinase probe. Appl. Environ. Microbiol. 52: 142-145.
Wu, M. L., Y. C. Chuang, J. P. Chen, C. S. Chen, and M. C. Chang . 2001. Identification and characterization of the three chitin-binding domains within the multidomain chitinase Chi92 from Aeromonas hydrophila JP101. Appl. Environ. Microbiol. 67(11): 5100-5106.
Wu, M. H. and R. A. Laine. 1999. Sequence of the V. parahaemolyticus gene for cytoplasmic N, N'-diacetylchitobiase and homology with related enzymes. J. Biochem. 125(6): 1086-1093.
Xia, G., C. Jin, J. Zhou, S. Yang, S. Zhang, and C. Jin. 2001. A novel chitinase having a unique mode of action from Aspergillus fumigatus YJ-407. Eur. J. Biochem. 268(14): 4079-4085.
Xin, H., H. Zhang, K. C. Zen, S. Muthukrishnan, and K. J. Kramer. 2000. Homology modeling of the insect chitinase catalytic domain-oligosaccharide complex and the role of a putative active site tryptophan in catalysis. Insect Biochem. Molecular Biol. 30: 107-117.
Yamada, A., N. Shibbuya, O. Kodama, and T. Akatsuka. 1993. Introduction of phytoalexin formation in suspension-cultured rice cells by N-acetylchitooligosaccharides. Biotech. Biochem. 57: 405-409.
Yanai, K., N. Takaya, N. Kojima, H. Horiuchi, A. Ohta, and M. Takagi. 1992. Purification of two chitinases from Rhizopus oligosporus isolation and sequencing of the encoding genes. J. Bacteriol. 174: 7398-7406.
Yang, Q. and Z. Z. Gong. 2002. Purification and characterization of an ethylene-induced antifungal protein from leaves of guilder rose (Hydrangea macrophylla). Protein Expre. Purification 24(1): 76-82.
Ye, X. Y. and T. B. Ng. 2002. A new antifungal protein and a chitinase with prominent macrophage-stimulating activity from seeds of Phaseolus vulgaris cv. pinto. Biochem. Biophys. Res. Commun. 290(2): 813-819.
Zhou, Z., H. Liu, Y. Li, and W. Gong. 2002. Purification, crystallization and preliminary crystallographic studies of a class II chitinase from kidney bean seeds. Protein Pept. Lett. 9(3): 265-268.
Zverlov, V. V., K. P. Fuchs, and W. H. Schwarz. Chi18A, the endochitinase in the cellulosome of the thermophilic, cellulolytic bacterium Clostridium thermocellum. Appl. Environ. Microbiol. 68(6): 3176-3179.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top